MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordttopon Structured version   Visualization version   GIF version

Theorem ordttopon 23018
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordttopon (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) ∈ (TopOnβ€˜π‘‹))

Proof of Theorem ordttopon
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . 4 𝑋 = dom 𝑅
2 eqid 2724 . . . 4 ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
3 eqid 2724 . . . 4 ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})
41, 2, 3ordtval 23014 . . 3 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))))
5 fibas 22801 . . . 4 (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))) ∈ TopBases
6 tgtopon 22795 . . . 4 ((fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))) ∈ TopBases β†’ (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))) ∈ (TopOnβ€˜βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))))
75, 6ax-mp 5 . . 3 (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))) ∈ (TopOnβ€˜βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))))
84, 7eqeltrdi 2833 . 2 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) ∈ (TopOnβ€˜βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))))
91, 2, 3ordtuni 23015 . . . 4 (𝑅 ∈ 𝑉 β†’ 𝑋 = βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))
10 dmexg 7887 . . . . . . . 8 (𝑅 ∈ 𝑉 β†’ dom 𝑅 ∈ V)
111, 10eqeltrid 2829 . . . . . . 7 (𝑅 ∈ 𝑉 β†’ 𝑋 ∈ V)
129, 11eqeltrrd 2826 . . . . . 6 (𝑅 ∈ 𝑉 β†’ βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V)
13 uniexb 7744 . . . . . 6 (({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V ↔ βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V)
1412, 13sylibr 233 . . . . 5 (𝑅 ∈ 𝑉 β†’ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V)
15 fiuni 9418 . . . . 5 (({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V β†’ βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) = βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))))
1614, 15syl 17 . . . 4 (𝑅 ∈ 𝑉 β†’ βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) = βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))))
179, 16eqtrd 2764 . . 3 (𝑅 ∈ 𝑉 β†’ 𝑋 = βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))))
1817fveq2d 6885 . 2 (𝑅 ∈ 𝑉 β†’ (TopOnβ€˜π‘‹) = (TopOnβ€˜βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))))
198, 18eleqtrrd 2828 1 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) ∈ (TopOnβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3424  Vcvv 3466   βˆͺ cun 3938  {csn 4620  βˆͺ cuni 4899   class class class wbr 5138   ↦ cmpt 5221  dom cdm 5666  ran crn 5667  β€˜cfv 6533  ficfi 9400  topGenctg 17381  ordTopcordt 17443  TopOnctopon 22733  TopBasesctb 22769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-om 7849  df-1o 8461  df-er 8698  df-en 8935  df-fin 8938  df-fi 9401  df-topgen 17387  df-ordt 17445  df-top 22717  df-topon 22734  df-bases 22770
This theorem is referenced by:  ordtopn3  23021  ordtcld1  23022  ordtcld2  23023  ordttop  23025  ordtrest  23027  ordtrest2lem  23028  ordtrest2  23029  letopon  23030  ordtt1  23204  ordthaus  23209  ordthmeolem  23626  ordtrestNEW  33356  ordtrest2NEWlem  33357  ordtrest2NEW  33358  ordtconnlem1  33359
  Copyright terms: Public domain W3C validator