Step | Hyp | Ref
| Expression |
1 | | ordttopon.3 |
. . . 4
⊢ 𝑋 = dom 𝑅 |
2 | | eqid 2738 |
. . . 4
⊢ ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
3 | | eqid 2738 |
. . . 4
⊢ ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
4 | 1, 2, 3 | ordtval 22340 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})))))) |
5 | | fibas 22127 |
. . . 4
⊢
(fi‘({𝑋} ∪
(ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})))) ∈ TopBases |
6 | | tgtopon 22121 |
. . . 4
⊢
((fi‘({𝑋}
∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})))) ∈ TopBases →
(topGen‘(fi‘({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) ∈ (TopOn‘∪ (fi‘({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})))))) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢
(topGen‘(fi‘({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) ∈ (TopOn‘∪ (fi‘({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) |
8 | 4, 7 | eqeltrdi 2847 |
. 2
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘∪ (fi‘({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})))))) |
9 | 1, 2, 3 | ordtuni 22341 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪ ({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})))) |
10 | | dmexg 7750 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) |
11 | 1, 10 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑋 ∈ V) |
12 | 9, 11 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → ∪ ({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V) |
13 | | uniexb 7614 |
. . . . . 6
⊢ (({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V ↔ ∪ ({𝑋}
∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V) |
14 | 12, 13 | sylibr 233 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → ({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V) |
15 | | fiuni 9187 |
. . . . 5
⊢ (({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V → ∪ ({𝑋}
∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))) = ∪
(fi‘({𝑋} ∪ (ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) |
16 | 14, 15 | syl 17 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → ∪ ({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))) = ∪
(fi‘({𝑋} ∪ (ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) |
17 | 9, 16 | eqtrd 2778 |
. . 3
⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪
(fi‘({𝑋} ∪ (ran
(𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) |
18 | 17 | fveq2d 6778 |
. 2
⊢ (𝑅 ∈ 𝑉 → (TopOn‘𝑋) = (TopOn‘∪ (fi‘({𝑋} ∪ (ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})))))) |
19 | 8, 18 | eleqtrrd 2842 |
1
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |