MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordttopon Structured version   Visualization version   GIF version

Theorem ordttopon 21893
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordttopon (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))

Proof of Theorem ordttopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . 4 𝑋 = dom 𝑅
2 eqid 2758 . . . 4 ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
3 eqid 2758 . . . 4 ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
41, 2, 3ordtval 21889 . . 3 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
5 fibas 21677 . . . 4 (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))) ∈ TopBases
6 tgtopon 21671 . . . 4 ((fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))) ∈ TopBases → (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
75, 6ax-mp 5 . . 3 (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
84, 7eqeltrdi 2860 . 2 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
91, 2, 3ordtuni 21890 . . . 4 (𝑅𝑉𝑋 = ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))
10 dmexg 7613 . . . . . . . 8 (𝑅𝑉 → dom 𝑅 ∈ V)
111, 10eqeltrid 2856 . . . . . . 7 (𝑅𝑉𝑋 ∈ V)
129, 11eqeltrrd 2853 . . . . . 6 (𝑅𝑉 ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
13 uniexb 7485 . . . . . 6 (({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
1412, 13sylibr 237 . . . . 5 (𝑅𝑉 → ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
15 fiuni 8925 . . . . 5 (({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V → ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
1614, 15syl 17 . . . 4 (𝑅𝑉 ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
179, 16eqtrd 2793 . . 3 (𝑅𝑉𝑋 = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
1817fveq2d 6662 . 2 (𝑅𝑉 → (TopOn‘𝑋) = (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
198, 18eleqtrrd 2855 1 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2111  {crab 3074  Vcvv 3409  cun 3856  {csn 4522   cuni 4798   class class class wbr 5032  cmpt 5112  dom cdm 5524  ran crn 5525  cfv 6335  ficfi 8907  topGenctg 16769  ordTopcordt 16830  TopOnctopon 21610  TopBasesctb 21645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-om 7580  df-1o 8112  df-er 8299  df-en 8528  df-fin 8531  df-fi 8908  df-topgen 16775  df-ordt 16832  df-top 21594  df-topon 21611  df-bases 21646
This theorem is referenced by:  ordtopn3  21896  ordtcld1  21897  ordtcld2  21898  ordttop  21900  ordtrest  21902  ordtrest2lem  21903  ordtrest2  21904  letopon  21905  ordtt1  22079  ordthaus  22084  ordthmeolem  22501  ordtrestNEW  31392  ordtrest2NEWlem  31393  ordtrest2NEW  31394  ordtconnlem1  31395
  Copyright terms: Public domain W3C validator