MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordttopon Structured version   Visualization version   GIF version

Theorem ordttopon 22689
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordttopon (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) ∈ (TopOnβ€˜π‘‹))

Proof of Theorem ordttopon
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . 4 𝑋 = dom 𝑅
2 eqid 2733 . . . 4 ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
3 eqid 2733 . . . 4 ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) = ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})
41, 2, 3ordtval 22685 . . 3 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))))
5 fibas 22472 . . . 4 (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))) ∈ TopBases
6 tgtopon 22466 . . . 4 ((fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))) ∈ TopBases β†’ (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))) ∈ (TopOnβ€˜βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))))
75, 6ax-mp 5 . . 3 (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))) ∈ (TopOnβ€˜βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))))
84, 7eqeltrdi 2842 . 2 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) ∈ (TopOnβ€˜βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))))
91, 2, 3ordtuni 22686 . . . 4 (𝑅 ∈ 𝑉 β†’ 𝑋 = βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))
10 dmexg 7891 . . . . . . . 8 (𝑅 ∈ 𝑉 β†’ dom 𝑅 ∈ V)
111, 10eqeltrid 2838 . . . . . . 7 (𝑅 ∈ 𝑉 β†’ 𝑋 ∈ V)
129, 11eqeltrrd 2835 . . . . . 6 (𝑅 ∈ 𝑉 β†’ βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V)
13 uniexb 7748 . . . . . 6 (({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V ↔ βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V)
1412, 13sylibr 233 . . . . 5 (𝑅 ∈ 𝑉 β†’ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V)
15 fiuni 9420 . . . . 5 (({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) ∈ V β†’ βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) = βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))))
1614, 15syl 17 . . . 4 (𝑅 ∈ 𝑉 β†’ βˆͺ ({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))) = βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))))
179, 16eqtrd 2773 . . 3 (𝑅 ∈ 𝑉 β†’ 𝑋 = βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})))))
1817fveq2d 6893 . 2 (𝑅 ∈ 𝑉 β†’ (TopOnβ€˜π‘‹) = (TopOnβ€˜βˆͺ (fiβ€˜({𝑋} βˆͺ (ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βˆͺ ran (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}))))))
198, 18eleqtrrd 2837 1 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) ∈ (TopOnβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   = wceq 1542   ∈ wcel 2107  {crab 3433  Vcvv 3475   βˆͺ cun 3946  {csn 4628  βˆͺ cuni 4908   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5676  ran crn 5677  β€˜cfv 6541  ficfi 9402  topGenctg 17380  ordTopcordt 17442  TopOnctopon 22404  TopBasesctb 22440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7853  df-1o 8463  df-er 8700  df-en 8937  df-fin 8940  df-fi 9403  df-topgen 17386  df-ordt 17444  df-top 22388  df-topon 22405  df-bases 22441
This theorem is referenced by:  ordtopn3  22692  ordtcld1  22693  ordtcld2  22694  ordttop  22696  ordtrest  22698  ordtrest2lem  22699  ordtrest2  22700  letopon  22701  ordtt1  22875  ordthaus  22880  ordthmeolem  23297  ordtrestNEW  32890  ordtrest2NEWlem  32891  ordtrest2NEW  32892  ordtconnlem1  32893
  Copyright terms: Public domain W3C validator