MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordttopon Structured version   Visualization version   GIF version

Theorem ordttopon 22544
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordttopon (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))

Proof of Theorem ordttopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . 4 𝑋 = dom 𝑅
2 eqid 2736 . . . 4 ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
3 eqid 2736 . . . 4 ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
41, 2, 3ordtval 22540 . . 3 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
5 fibas 22327 . . . 4 (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))) ∈ TopBases
6 tgtopon 22321 . . . 4 ((fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))) ∈ TopBases → (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
75, 6ax-mp 5 . . 3 (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
84, 7eqeltrdi 2846 . 2 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
91, 2, 3ordtuni 22541 . . . 4 (𝑅𝑉𝑋 = ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))
10 dmexg 7840 . . . . . . . 8 (𝑅𝑉 → dom 𝑅 ∈ V)
111, 10eqeltrid 2842 . . . . . . 7 (𝑅𝑉𝑋 ∈ V)
129, 11eqeltrrd 2839 . . . . . 6 (𝑅𝑉 ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
13 uniexb 7698 . . . . . 6 (({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
1412, 13sylibr 233 . . . . 5 (𝑅𝑉 → ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
15 fiuni 9364 . . . . 5 (({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V → ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
1614, 15syl 17 . . . 4 (𝑅𝑉 ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
179, 16eqtrd 2776 . . 3 (𝑅𝑉𝑋 = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
1817fveq2d 6846 . 2 (𝑅𝑉 → (TopOn‘𝑋) = (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
198, 18eleqtrrd 2841 1 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  cun 3908  {csn 4586   cuni 4865   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cfv 6496  ficfi 9346  topGenctg 17319  ordTopcordt 17381  TopOnctopon 22259  TopBasesctb 22295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-er 8648  df-en 8884  df-fin 8887  df-fi 9347  df-topgen 17325  df-ordt 17383  df-top 22243  df-topon 22260  df-bases 22296
This theorem is referenced by:  ordtopn3  22547  ordtcld1  22548  ordtcld2  22549  ordttop  22551  ordtrest  22553  ordtrest2lem  22554  ordtrest2  22555  letopon  22556  ordtt1  22730  ordthaus  22735  ordthmeolem  23152  ordtrestNEW  32502  ordtrest2NEWlem  32503  ordtrest2NEW  32504  ordtconnlem1  32505
  Copyright terms: Public domain W3C validator