MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordttopon Structured version   Visualization version   GIF version

Theorem ordttopon 23222
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordttopon (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))

Proof of Theorem ordttopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . 4 𝑋 = dom 𝑅
2 eqid 2740 . . . 4 ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
3 eqid 2740 . . . 4 ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
41, 2, 3ordtval 23218 . . 3 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
5 fibas 23005 . . . 4 (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))) ∈ TopBases
6 tgtopon 22999 . . . 4 ((fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))) ∈ TopBases → (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
75, 6ax-mp 5 . . 3 (topGen‘(fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
84, 7eqeltrdi 2852 . 2 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
91, 2, 3ordtuni 23219 . . . 4 (𝑅𝑉𝑋 = ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))
10 dmexg 7941 . . . . . . . 8 (𝑅𝑉 → dom 𝑅 ∈ V)
111, 10eqeltrid 2848 . . . . . . 7 (𝑅𝑉𝑋 ∈ V)
129, 11eqeltrrd 2845 . . . . . 6 (𝑅𝑉 ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
13 uniexb 7799 . . . . . 6 (({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
1412, 13sylibr 234 . . . . 5 (𝑅𝑉 → ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V)
15 fiuni 9497 . . . . 5 (({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) ∈ V → ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
1614, 15syl 17 . . . 4 (𝑅𝑉 ({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))) = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
179, 16eqtrd 2780 . . 3 (𝑅𝑉𝑋 = (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))))
1817fveq2d 6924 . 2 (𝑅𝑉 → (TopOn‘𝑋) = (TopOn‘ (fi‘({𝑋} ∪ (ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))))))
198, 18eleqtrrd 2847 1 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cun 3974  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cfv 6573  ficfi 9479  topGenctg 17497  ordTopcordt 17559  TopOnctopon 22937  TopBasesctb 22973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-topgen 17503  df-ordt 17561  df-top 22921  df-topon 22938  df-bases 22974
This theorem is referenced by:  ordtopn3  23225  ordtcld1  23226  ordtcld2  23227  ordttop  23229  ordtrest  23231  ordtrest2lem  23232  ordtrest2  23233  letopon  23234  ordtt1  23408  ordthaus  23413  ordthmeolem  23830  ordtrestNEW  33867  ordtrest2NEWlem  33868  ordtrest2NEW  33869  ordtconnlem1  33870
  Copyright terms: Public domain W3C validator