| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptbasin2 | Structured version Visualization version GIF version | ||
| Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
| Ref | Expression |
|---|---|
| ptbasin2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | . . . 4 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
| 2 | 1 | ptbasin 23532 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 ∩ 𝑣) ∈ 𝐵) |
| 3 | 2 | ralrimivva 3189 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵) |
| 4 | 1 | ptuni2 23531 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) |
| 5 | ixpexg 8944 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V) | |
| 6 | fvex 6899 | . . . . . . . 8 ⊢ (𝐹‘𝑘) ∈ V | |
| 7 | 6 | uniex 7743 | . . . . . . 7 ⊢ ∪ (𝐹‘𝑘) ∈ V |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → ∪ (𝐹‘𝑘) ∈ V) |
| 9 | 5, 8 | mprg 3056 | . . . . 5 ⊢ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V |
| 10 | 4, 9 | eqeltrrdi 2842 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵 ∈ V) |
| 11 | uniexb 7766 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 12 | 10, 11 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ V) |
| 13 | inficl 9447 | . . 3 ⊢ (𝐵 ∈ V → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) |
| 15 | 3, 14 | mpbid 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 ∀wral 3050 ∃wrex 3059 Vcvv 3463 ∖ cdif 3928 ∩ cin 3930 ∪ cuni 4887 Fn wfn 6536 ⟶wf 6537 ‘cfv 6541 Xcixp 8919 Fincfn 8967 ficfi 9432 Topctop 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1o 8488 df-2o 8489 df-ixp 8920 df-en 8968 df-fin 8971 df-fi 9433 df-top 22849 |
| This theorem is referenced by: ptbas 23534 ptbasfi 23536 |
| Copyright terms: Public domain | W3C validator |