MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasin2 Structured version   Visualization version   GIF version

Theorem ptbasin2 22186
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasin2 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptbasin2
Dummy variables 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21ptbasin 22185 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢𝑣) ∈ 𝐵)
32ralrimivva 3191 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵)
41ptuni2 22184 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
5 ixpexg 8486 . . . . . 6 (∀𝑘𝐴 (𝐹𝑘) ∈ V → X𝑘𝐴 (𝐹𝑘) ∈ V)
6 fvex 6683 . . . . . . . 8 (𝐹𝑘) ∈ V
76uniex 7467 . . . . . . 7 (𝐹𝑘) ∈ V
87a1i 11 . . . . . 6 (𝑘𝐴 (𝐹𝑘) ∈ V)
95, 8mprg 3152 . . . . 5 X𝑘𝐴 (𝐹𝑘) ∈ V
104, 9eqeltrrdi 2922 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ V)
11 uniexb 7486 . . . 4 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1210, 11sylibr 236 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ V)
13 inficl 8889 . . 3 (𝐵 ∈ V → (∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵))
1412, 13syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵))
153, 14mpbid 234 1 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cin 3935   cuni 4838   Fn wfn 6350  wf 6351  cfv 6355  Xcixp 8461  Fincfn 8509  ficfi 8874  Topctop 21501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-ixp 8462  df-en 8510  df-fin 8513  df-fi 8875  df-top 21502
This theorem is referenced by:  ptbas  22187  ptbasfi  22189
  Copyright terms: Public domain W3C validator