![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptbasin2 | Structured version Visualization version GIF version |
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
ptbas.1 | β’ π΅ = {π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))} |
Ref | Expression |
---|---|
ptbasin2 | β’ ((π΄ β π β§ πΉ:π΄βΆTop) β (fiβπ΅) = π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptbas.1 | . . . 4 β’ π΅ = {π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))} | |
2 | 1 | ptbasin 23072 | . . 3 β’ (((π΄ β π β§ πΉ:π΄βΆTop) β§ (π’ β π΅ β§ π£ β π΅)) β (π’ β© π£) β π΅) |
3 | 2 | ralrimivva 3200 | . 2 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β βπ’ β π΅ βπ£ β π΅ (π’ β© π£) β π΅) |
4 | 1 | ptuni2 23071 | . . . . 5 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β Xπ β π΄ βͺ (πΉβπ) = βͺ π΅) |
5 | ixpexg 8912 | . . . . . 6 β’ (βπ β π΄ βͺ (πΉβπ) β V β Xπ β π΄ βͺ (πΉβπ) β V) | |
6 | fvex 6901 | . . . . . . . 8 β’ (πΉβπ) β V | |
7 | 6 | uniex 7727 | . . . . . . 7 β’ βͺ (πΉβπ) β V |
8 | 7 | a1i 11 | . . . . . 6 β’ (π β π΄ β βͺ (πΉβπ) β V) |
9 | 5, 8 | mprg 3067 | . . . . 5 β’ Xπ β π΄ βͺ (πΉβπ) β V |
10 | 4, 9 | eqeltrrdi 2842 | . . . 4 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β βͺ π΅ β V) |
11 | uniexb 7747 | . . . 4 β’ (π΅ β V β βͺ π΅ β V) | |
12 | 10, 11 | sylibr 233 | . . 3 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β π΅ β V) |
13 | inficl 9416 | . . 3 β’ (π΅ β V β (βπ’ β π΅ βπ£ β π΅ (π’ β© π£) β π΅ β (fiβπ΅) = π΅)) | |
14 | 12, 13 | syl 17 | . 2 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β (βπ’ β π΅ βπ£ β π΅ (π’ β© π£) β π΅ β (fiβπ΅) = π΅)) |
15 | 3, 14 | mpbid 231 | 1 β’ ((π΄ β π β§ πΉ:π΄βΆTop) β (fiβπ΅) = π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 βwex 1781 β wcel 2106 {cab 2709 βwral 3061 βwrex 3070 Vcvv 3474 β cdif 3944 β© cin 3946 βͺ cuni 4907 Fn wfn 6535 βΆwf 6536 βcfv 6540 Xcixp 8887 Fincfn 8935 ficfi 9401 Topctop 22386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-er 8699 df-ixp 8888 df-en 8936 df-fin 8939 df-fi 9402 df-top 22387 |
This theorem is referenced by: ptbas 23074 ptbasfi 23076 |
Copyright terms: Public domain | W3C validator |