![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptbasin2 | Structured version Visualization version GIF version |
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
Ref | Expression |
---|---|
ptbasin2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptbas.1 | . . . 4 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
2 | 1 | ptbasin 21708 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 ∩ 𝑣) ∈ 𝐵) |
3 | 2 | ralrimivva 3153 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵) |
4 | 1 | ptuni2 21707 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) |
5 | ixpexg 8173 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V) | |
6 | fvex 6425 | . . . . . . . 8 ⊢ (𝐹‘𝑘) ∈ V | |
7 | 6 | uniex 7188 | . . . . . . 7 ⊢ ∪ (𝐹‘𝑘) ∈ V |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → ∪ (𝐹‘𝑘) ∈ V) |
9 | 5, 8 | mprg 3108 | . . . . 5 ⊢ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V |
10 | 4, 9 | syl6eqelr 2888 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵 ∈ V) |
11 | uniexb 7207 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
12 | 10, 11 | sylibr 226 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ V) |
13 | inficl 8574 | . . 3 ⊢ (𝐵 ∈ V → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) |
15 | 3, 14 | mpbid 224 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∃wex 1875 ∈ wcel 2157 {cab 2786 ∀wral 3090 ∃wrex 3091 Vcvv 3386 ∖ cdif 3767 ∩ cin 3769 ∪ cuni 4629 Fn wfn 6097 ⟶wf 6098 ‘cfv 6102 Xcixp 8149 Fincfn 8196 ficfi 8559 Topctop 21025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-ixp 8150 df-en 8197 df-fin 8200 df-fi 8560 df-top 21026 |
This theorem is referenced by: ptbas 21710 ptbasfi 21712 |
Copyright terms: Public domain | W3C validator |