MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasin2 Structured version   Visualization version   GIF version

Theorem ptbasin2 23521
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasin2 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptbasin2
Dummy variables 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21ptbasin 23520 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢𝑣) ∈ 𝐵)
32ralrimivva 3188 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵)
41ptuni2 23519 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
5 ixpexg 8941 . . . . . 6 (∀𝑘𝐴 (𝐹𝑘) ∈ V → X𝑘𝐴 (𝐹𝑘) ∈ V)
6 fvex 6894 . . . . . . . 8 (𝐹𝑘) ∈ V
76uniex 7740 . . . . . . 7 (𝐹𝑘) ∈ V
87a1i 11 . . . . . 6 (𝑘𝐴 (𝐹𝑘) ∈ V)
95, 8mprg 3058 . . . . 5 X𝑘𝐴 (𝐹𝑘) ∈ V
104, 9eqeltrrdi 2844 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ V)
11 uniexb 7763 . . . 4 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1210, 11sylibr 234 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ V)
13 inficl 9442 . . 3 (𝐵 ∈ V → (∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵))
1412, 13syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵))
153, 14mpbid 232 1 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cin 3930   cuni 4888   Fn wfn 6531  wf 6532  cfv 6536  Xcixp 8916  Fincfn 8964  ficfi 9427  Topctop 22836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-2o 8486  df-ixp 8917  df-en 8965  df-fin 8968  df-fi 9428  df-top 22837
This theorem is referenced by:  ptbas  23522  ptbasfi  23524
  Copyright terms: Public domain W3C validator