| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptbasin2 | Structured version Visualization version GIF version | ||
| Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
| Ref | Expression |
|---|---|
| ptbasin2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | . . . 4 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
| 2 | 1 | ptbasin 23520 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 ∩ 𝑣) ∈ 𝐵) |
| 3 | 2 | ralrimivva 3188 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵) |
| 4 | 1 | ptuni2 23519 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) |
| 5 | ixpexg 8941 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V) | |
| 6 | fvex 6894 | . . . . . . . 8 ⊢ (𝐹‘𝑘) ∈ V | |
| 7 | 6 | uniex 7740 | . . . . . . 7 ⊢ ∪ (𝐹‘𝑘) ∈ V |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → ∪ (𝐹‘𝑘) ∈ V) |
| 9 | 5, 8 | mprg 3058 | . . . . 5 ⊢ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V |
| 10 | 4, 9 | eqeltrrdi 2844 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵 ∈ V) |
| 11 | uniexb 7763 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 12 | 10, 11 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ V) |
| 13 | inficl 9442 | . . 3 ⊢ (𝐵 ∈ V → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) |
| 15 | 3, 14 | mpbid 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∖ cdif 3928 ∩ cin 3930 ∪ cuni 4888 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 Xcixp 8916 Fincfn 8964 ficfi 9427 Topctop 22836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 df-ixp 8917 df-en 8965 df-fin 8968 df-fi 9428 df-top 22837 |
| This theorem is referenced by: ptbas 23522 ptbasfi 23524 |
| Copyright terms: Public domain | W3C validator |