| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptbasin2 | Structured version Visualization version GIF version | ||
| Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
| Ref | Expression |
|---|---|
| ptbasin2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | . . . 4 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
| 2 | 1 | ptbasin 23495 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 ∩ 𝑣) ∈ 𝐵) |
| 3 | 2 | ralrimivva 3176 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵) |
| 4 | 1 | ptuni2 23494 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) |
| 5 | ixpexg 8854 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V) | |
| 6 | fvex 6843 | . . . . . . . 8 ⊢ (𝐹‘𝑘) ∈ V | |
| 7 | 6 | uniex 7682 | . . . . . . 7 ⊢ ∪ (𝐹‘𝑘) ∈ V |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → ∪ (𝐹‘𝑘) ∈ V) |
| 9 | 5, 8 | mprg 3054 | . . . . 5 ⊢ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V |
| 10 | 4, 9 | eqeltrrdi 2842 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵 ∈ V) |
| 11 | uniexb 7705 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 12 | 10, 11 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ V) |
| 13 | inficl 9318 | . . 3 ⊢ (𝐵 ∈ V → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) |
| 15 | 3, 14 | mpbid 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ∪ cuni 4860 Fn wfn 6483 ⟶wf 6484 ‘cfv 6488 Xcixp 8829 Fincfn 8877 ficfi 9303 Topctop 22811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-om 7805 df-1o 8393 df-2o 8394 df-ixp 8830 df-en 8878 df-fin 8881 df-fi 9304 df-top 22812 |
| This theorem is referenced by: ptbas 23497 ptbasfi 23499 |
| Copyright terms: Public domain | W3C validator |