MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasin2 Structured version   Visualization version   GIF version

Theorem ptbasin2 23465
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasin2 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptbasin2
Dummy variables 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21ptbasin 23464 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢𝑣) ∈ 𝐵)
32ralrimivva 3180 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵)
41ptuni2 23463 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
5 ixpexg 8895 . . . . . 6 (∀𝑘𝐴 (𝐹𝑘) ∈ V → X𝑘𝐴 (𝐹𝑘) ∈ V)
6 fvex 6871 . . . . . . . 8 (𝐹𝑘) ∈ V
76uniex 7717 . . . . . . 7 (𝐹𝑘) ∈ V
87a1i 11 . . . . . 6 (𝑘𝐴 (𝐹𝑘) ∈ V)
95, 8mprg 3050 . . . . 5 X𝑘𝐴 (𝐹𝑘) ∈ V
104, 9eqeltrrdi 2837 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ V)
11 uniexb 7740 . . . 4 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1210, 11sylibr 234 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ V)
13 inficl 9376 . . 3 (𝐵 ∈ V → (∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵))
1412, 13syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵))
153, 14mpbid 232 1 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  cin 3913   cuni 4871   Fn wfn 6506  wf 6507  cfv 6511  Xcixp 8870  Fincfn 8918  ficfi 9361  Topctop 22780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435  df-ixp 8871  df-en 8919  df-fin 8922  df-fi 9362  df-top 22781
This theorem is referenced by:  ptbas  23466  ptbasfi  23468
  Copyright terms: Public domain W3C validator