![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptbasin2 | Structured version Visualization version GIF version |
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
Ref | Expression |
---|---|
ptbasin2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptbas.1 | . . . 4 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
2 | 1 | ptbasin 21873 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 ∩ 𝑣) ∈ 𝐵) |
3 | 2 | ralrimivva 3160 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵) |
4 | 1 | ptuni2 21872 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) |
5 | ixpexg 8341 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V) | |
6 | fvex 6558 | . . . . . . . 8 ⊢ (𝐹‘𝑘) ∈ V | |
7 | 6 | uniex 7330 | . . . . . . 7 ⊢ ∪ (𝐹‘𝑘) ∈ V |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → ∪ (𝐹‘𝑘) ∈ V) |
9 | 5, 8 | mprg 3121 | . . . . 5 ⊢ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ V |
10 | 4, 9 | syl6eqelr 2894 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵 ∈ V) |
11 | uniexb 7350 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
12 | 10, 11 | sylibr 235 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ V) |
13 | inficl 8742 | . . 3 ⊢ (𝐵 ∈ V → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ∩ 𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵)) |
15 | 3, 14 | mpbid 233 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∃wex 1765 ∈ wcel 2083 {cab 2777 ∀wral 3107 ∃wrex 3108 Vcvv 3440 ∖ cdif 3862 ∩ cin 3864 ∪ cuni 4751 Fn wfn 6227 ⟶wf 6228 ‘cfv 6232 Xcixp 8317 Fincfn 8364 ficfi 8727 Topctop 21189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-ixp 8318 df-en 8365 df-fin 8368 df-fi 8728 df-top 21190 |
This theorem is referenced by: ptbas 21875 ptbasfi 21877 |
Copyright terms: Public domain | W3C validator |