Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasin2 Structured version   Visualization version   GIF version

Theorem ptbasin2 21874
 Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasin2 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptbasin2
Dummy variables 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21ptbasin 21873 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢𝑣) ∈ 𝐵)
32ralrimivva 3160 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵)
41ptuni2 21872 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
5 ixpexg 8341 . . . . . 6 (∀𝑘𝐴 (𝐹𝑘) ∈ V → X𝑘𝐴 (𝐹𝑘) ∈ V)
6 fvex 6558 . . . . . . . 8 (𝐹𝑘) ∈ V
76uniex 7330 . . . . . . 7 (𝐹𝑘) ∈ V
87a1i 11 . . . . . 6 (𝑘𝐴 (𝐹𝑘) ∈ V)
95, 8mprg 3121 . . . . 5 X𝑘𝐴 (𝐹𝑘) ∈ V
104, 9syl6eqelr 2894 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ V)
11 uniexb 7350 . . . 4 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1210, 11sylibr 235 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ V)
13 inficl 8742 . . 3 (𝐵 ∈ V → (∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵))
1412, 13syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (∀𝑢𝐵𝑣𝐵 (𝑢𝑣) ∈ 𝐵 ↔ (fi‘𝐵) = 𝐵))
153, 14mpbid 233 1 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1080   = wceq 1525  ∃wex 1765   ∈ wcel 2083  {cab 2777  ∀wral 3107  ∃wrex 3108  Vcvv 3440   ∖ cdif 3862   ∩ cin 3864  ∪ cuni 4751   Fn wfn 6227  ⟶wf 6228  ‘cfv 6232  Xcixp 8317  Fincfn 8364  ficfi 8727  Topctop 21189 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-ixp 8318  df-en 8365  df-fin 8368  df-fi 8728  df-top 21190 This theorem is referenced by:  ptbas  21875  ptbasfi  21877
 Copyright terms: Public domain W3C validator