| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ordttopon.3 | . . . . . . . . 9
⊢ 𝑋 = dom 𝑅 | 
| 2 |  | eqid 2737 | . . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) | 
| 3 |  | eqid 2737 | . . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) | 
| 4 | 1, 2, 3 | ordtuni 23198 | . . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) | 
| 5 | 4 | adantr 480 | . . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 = ∪ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) | 
| 6 |  | dmexg 7923 | . . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | 
| 7 | 1, 6 | eqeltrid 2845 | . . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → 𝑋 ∈ V) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 ∈ V) | 
| 9 | 5, 8 | eqeltrrd 2842 | . . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ∪
({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) | 
| 10 |  | uniexb 7784 | . . . . . 6
⊢ (({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V ↔ ∪ ({𝑋}
∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) | 
| 11 | 9, 10 | sylibr 234 | . . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) | 
| 12 |  | ssfii 9459 | . . . . 5
⊢ (({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) | 
| 13 | 11, 12 | syl 17 | . . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) | 
| 14 |  | fibas 22984 | . . . . 5
⊢
(fi‘({𝑋} ∪
(ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases | 
| 15 |  | bastg 22973 | . . . . 5
⊢
((fi‘({𝑋}
∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases →
(fi‘({𝑋} ∪ (ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) | 
| 16 | 14, 15 | ax-mp 5 | . . . 4
⊢
(fi‘({𝑋} ∪
(ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) | 
| 17 | 13, 16 | sstrdi 3996 | . . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) | 
| 18 | 1, 2, 3 | ordtval 23197 | . . . 4
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) | 
| 19 | 18 | adantr 480 | . . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) | 
| 20 | 17, 19 | sseqtrrd 4021 | . 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (ordTop‘𝑅)) | 
| 21 |  | ssun2 4179 | . . 3
⊢ (ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) ⊆ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) | 
| 22 |  | ssun2 4179 | . . . 4
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) | 
| 23 |  | simpr 484 | . . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) | 
| 24 |  | eqidd 2738 | . . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥}) | 
| 25 |  | breq1 5146 | . . . . . . . . 9
⊢ (𝑦 = 𝑃 → (𝑦𝑅𝑥 ↔ 𝑃𝑅𝑥)) | 
| 26 | 25 | notbid 318 | . . . . . . . 8
⊢ (𝑦 = 𝑃 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑃𝑅𝑥)) | 
| 27 | 26 | rabbidv 3444 | . . . . . . 7
⊢ (𝑦 = 𝑃 → {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥}) | 
| 28 | 27 | rspceeqv 3645 | . . . . . 6
⊢ ((𝑃 ∈ 𝑋 ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥}) → ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) | 
| 29 | 23, 24, 28 | syl2anc 584 | . . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) | 
| 30 |  | rabexg 5337 | . . . . . 6
⊢ (𝑋 ∈ V → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ V) | 
| 31 |  | eqid 2737 | . . . . . . 7
⊢ (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) | 
| 32 | 31 | elrnmpt 5969 | . . . . . 6
⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ V → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) | 
| 33 | 8, 30, 32 | 3syl 18 | . . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) | 
| 34 | 29, 33 | mpbird 257 | . . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) | 
| 35 | 22, 34 | sselid 3981 | . . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) | 
| 36 | 21, 35 | sselid 3981 | . 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) | 
| 37 | 20, 36 | sseldd 3984 | 1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅)) |