MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn2 Structured version   Visualization version   GIF version

Theorem ordtopn2 22562
Description: A downward ray (-∞, 𝑃) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn2 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ (ordTopβ€˜π‘…))
Distinct variable groups:   π‘₯,𝑃   π‘₯,𝑅   π‘₯,𝑉   π‘₯,𝑋

Proof of Theorem ordtopn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9 𝑋 = dom 𝑅
2 eqid 2737 . . . . . . . . 9 ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) = ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})
3 eqid 2737 . . . . . . . . 9 ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
41, 2, 3ordtuni 22557 . . . . . . . 8 (𝑅 ∈ 𝑉 β†’ 𝑋 = βˆͺ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))
54adantr 482 . . . . . . 7 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ 𝑋 = βˆͺ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))
6 dmexg 7845 . . . . . . . . 9 (𝑅 ∈ 𝑉 β†’ dom 𝑅 ∈ V)
71, 6eqeltrid 2842 . . . . . . . 8 (𝑅 ∈ 𝑉 β†’ 𝑋 ∈ V)
87adantr 482 . . . . . . 7 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ 𝑋 ∈ V)
95, 8eqeltrrd 2839 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ βˆͺ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V)
10 uniexb 7703 . . . . . 6 (({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V ↔ βˆͺ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V)
119, 10sylibr 233 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V)
12 ssfii 9362 . . . . 5 (({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) βŠ† (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))))
1311, 12syl 17 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) βŠ† (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))))
14 fibas 22343 . . . . 5 (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))) ∈ TopBases
15 bastg 22332 . . . . 5 ((fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))) ∈ TopBases β†’ (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))) βŠ† (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))))
1614, 15ax-mp 5 . . . 4 (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))) βŠ† (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))))
1713, 16sstrdi 3961 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) βŠ† (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))))
181, 2, 3ordtval 22556 . . . 4 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))))
1918adantr 482 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))))
2017, 19sseqtrrd 3990 . 2 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) βŠ† (ordTopβ€˜π‘…))
21 ssun2 4138 . . 3 (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})) βŠ† ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))
22 ssun2 4138 . . . 4 ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βŠ† (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
23 simpr 486 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
24 eqidd 2738 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯})
25 breq1 5113 . . . . . . . . 9 (𝑦 = 𝑃 β†’ (𝑦𝑅π‘₯ ↔ 𝑃𝑅π‘₯))
2625notbid 318 . . . . . . . 8 (𝑦 = 𝑃 β†’ (Β¬ 𝑦𝑅π‘₯ ↔ Β¬ 𝑃𝑅π‘₯))
2726rabbidv 3418 . . . . . . 7 (𝑦 = 𝑃 β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯})
2827rspceeqv 3600 . . . . . 6 ((𝑃 ∈ 𝑋 ∧ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯}) β†’ βˆƒπ‘¦ ∈ 𝑋 {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
2923, 24, 28syl2anc 585 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ βˆƒπ‘¦ ∈ 𝑋 {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
30 rabexg 5293 . . . . . 6 (𝑋 ∈ V β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ V)
31 eqid 2737 . . . . . . 7 (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
3231elrnmpt 5916 . . . . . 6 ({π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ V β†’ ({π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) ↔ βˆƒπ‘¦ ∈ 𝑋 {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
338, 30, 323syl 18 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) ↔ βˆƒπ‘¦ ∈ 𝑋 {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
3429, 33mpbird 257 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
3522, 34sselid 3947 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))
3621, 35sselid 3947 . 2 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))
3720, 36sseldd 3950 1 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ (ordTopβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3074  {crab 3410  Vcvv 3448   βˆͺ cun 3913   βŠ† wss 3915  {csn 4591  βˆͺ cuni 4870   class class class wbr 5110   ↦ cmpt 5193  dom cdm 5638  ran crn 5639  β€˜cfv 6501  ficfi 9353  topGenctg 17326  ordTopcordt 17388  TopBasesctb 22311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-en 8891  df-fin 8894  df-fi 9354  df-topgen 17332  df-ordt 17390  df-bases 22312
This theorem is referenced by:  ordtopn3  22563  ordtcld2  22565  ordtrest  22569  ordthauslem  22750  ordthmeolem  23168  ordtrestNEW  32542
  Copyright terms: Public domain W3C validator