MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn2 Structured version   Visualization version   GIF version

Theorem ordtopn2 23219
Description: A downward ray (-∞, 𝑃) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtopn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9 𝑋 = dom 𝑅
2 eqid 2735 . . . . . . . . 9 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
3 eqid 2735 . . . . . . . . 9 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
41, 2, 3ordtuni 23214 . . . . . . . 8 (𝑅𝑉𝑋 = ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
54adantr 480 . . . . . . 7 ((𝑅𝑉𝑃𝑋) → 𝑋 = ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
6 dmexg 7924 . . . . . . . . 9 (𝑅𝑉 → dom 𝑅 ∈ V)
71, 6eqeltrid 2843 . . . . . . . 8 (𝑅𝑉𝑋 ∈ V)
87adantr 480 . . . . . . 7 ((𝑅𝑉𝑃𝑋) → 𝑋 ∈ V)
95, 8eqeltrrd 2840 . . . . . 6 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
10 uniexb 7783 . . . . . 6 (({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
119, 10sylibr 234 . . . . 5 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
12 ssfii 9457 . . . . 5 (({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
1311, 12syl 17 . . . 4 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
14 fibas 23000 . . . . 5 (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases
15 bastg 22989 . . . . 5 ((fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases → (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
1614, 15ax-mp 5 . . . 4 (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
1713, 16sstrdi 4008 . . 3 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
181, 2, 3ordtval 23213 . . . 4 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
1918adantr 480 . . 3 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
2017, 19sseqtrrd 4037 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (ordTop‘𝑅))
21 ssun2 4189 . . 3 (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})) ⊆ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))
22 ssun2 4189 . . . 4 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
23 simpr 484 . . . . . 6 ((𝑅𝑉𝑃𝑋) → 𝑃𝑋)
24 eqidd 2736 . . . . . 6 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥})
25 breq1 5151 . . . . . . . . 9 (𝑦 = 𝑃 → (𝑦𝑅𝑥𝑃𝑅𝑥))
2625notbid 318 . . . . . . . 8 (𝑦 = 𝑃 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑃𝑅𝑥))
2726rabbidv 3441 . . . . . . 7 (𝑦 = 𝑃 → {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥})
2827rspceeqv 3645 . . . . . 6 ((𝑃𝑋 ∧ {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥}) → ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
2923, 24, 28syl2anc 584 . . . . 5 ((𝑅𝑉𝑃𝑋) → ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
30 rabexg 5343 . . . . . 6 (𝑋 ∈ V → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ V)
31 eqid 2735 . . . . . . 7 (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
3231elrnmpt 5972 . . . . . 6 ({𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ V → ({𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
338, 30, 323syl 18 . . . . 5 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
3429, 33mpbird 257 . . . 4 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
3522, 34sselid 3993 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))
3621, 35sselid 3993 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
3720, 36sseldd 3996 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  Vcvv 3478  cun 3961  wss 3963  {csn 4631   cuni 4912   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690  cfv 6563  ficfi 9448  topGenctg 17484  ordTopcordt 17546  TopBasesctb 22968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-fin 8988  df-fi 9449  df-topgen 17490  df-ordt 17548  df-bases 22969
This theorem is referenced by:  ordtopn3  23220  ordtcld2  23222  ordtrest  23226  ordthauslem  23407  ordthmeolem  23825  ordtrestNEW  33882
  Copyright terms: Public domain W3C validator