MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn2 Structured version   Visualization version   GIF version

Theorem ordtopn2 22690
Description: A downward ray (-∞, 𝑃) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn2 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ (ordTopβ€˜π‘…))
Distinct variable groups:   π‘₯,𝑃   π‘₯,𝑅   π‘₯,𝑉   π‘₯,𝑋

Proof of Theorem ordtopn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9 𝑋 = dom 𝑅
2 eqid 2732 . . . . . . . . 9 ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) = ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦})
3 eqid 2732 . . . . . . . . 9 ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
41, 2, 3ordtuni 22685 . . . . . . . 8 (𝑅 ∈ 𝑉 β†’ 𝑋 = βˆͺ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))
54adantr 481 . . . . . . 7 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ 𝑋 = βˆͺ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))
6 dmexg 7890 . . . . . . . . 9 (𝑅 ∈ 𝑉 β†’ dom 𝑅 ∈ V)
71, 6eqeltrid 2837 . . . . . . . 8 (𝑅 ∈ 𝑉 β†’ 𝑋 ∈ V)
87adantr 481 . . . . . . 7 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ 𝑋 ∈ V)
95, 8eqeltrrd 2834 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ βˆͺ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V)
10 uniexb 7747 . . . . . 6 (({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V ↔ βˆͺ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V)
119, 10sylibr 233 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V)
12 ssfii 9410 . . . . 5 (({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) ∈ V β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) βŠ† (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))))
1311, 12syl 17 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) βŠ† (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))))
14 fibas 22471 . . . . 5 (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))) ∈ TopBases
15 bastg 22460 . . . . 5 ((fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))) ∈ TopBases β†’ (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))) βŠ† (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))))
1614, 15ax-mp 5 . . . 4 (fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))) βŠ† (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))))
1713, 16sstrdi 3993 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) βŠ† (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))))
181, 2, 3ordtval 22684 . . . 4 (𝑅 ∈ 𝑉 β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))))
1918adantr 481 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ (ordTopβ€˜π‘…) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))))
2017, 19sseqtrrd 4022 . 2 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))) βŠ† (ordTopβ€˜π‘…))
21 ssun2 4172 . . 3 (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})) βŠ† ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))
22 ssun2 4172 . . . 4 ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) βŠ† (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
23 simpr 485 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
24 eqidd 2733 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯})
25 breq1 5150 . . . . . . . . 9 (𝑦 = 𝑃 β†’ (𝑦𝑅π‘₯ ↔ 𝑃𝑅π‘₯))
2625notbid 317 . . . . . . . 8 (𝑦 = 𝑃 β†’ (Β¬ 𝑦𝑅π‘₯ ↔ Β¬ 𝑃𝑅π‘₯))
2726rabbidv 3440 . . . . . . 7 (𝑦 = 𝑃 β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯})
2827rspceeqv 3632 . . . . . 6 ((𝑃 ∈ 𝑋 ∧ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯}) β†’ βˆƒπ‘¦ ∈ 𝑋 {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
2923, 24, 28syl2anc 584 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ βˆƒπ‘¦ ∈ 𝑋 {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
30 rabexg 5330 . . . . . 6 (𝑋 ∈ V β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ V)
31 eqid 2732 . . . . . . 7 (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) = (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})
3231elrnmpt 5953 . . . . . 6 ({π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ V β†’ ({π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) ↔ βˆƒπ‘¦ ∈ 𝑋 {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
338, 30, 323syl 18 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ ({π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}) ↔ βˆƒπ‘¦ ∈ 𝑋 {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} = {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
3429, 33mpbird 256 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))
3522, 34sselid 3979 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯})))
3621, 35sselid 3979 . 2 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ ({𝑋} βˆͺ (ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ π‘₯𝑅𝑦}) βˆͺ ran (𝑦 ∈ 𝑋 ↦ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑦𝑅π‘₯}))))
3720, 36sseldd 3982 1 ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) β†’ {π‘₯ ∈ 𝑋 ∣ Β¬ 𝑃𝑅π‘₯} ∈ (ordTopβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βˆͺ cun 3945   βŠ† wss 3947  {csn 4627  βˆͺ cuni 4907   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  ran crn 5676  β€˜cfv 6540  ficfi 9401  topGenctg 17379  ordTopcordt 17441  TopBasesctb 22439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-en 8936  df-fin 8939  df-fi 9402  df-topgen 17385  df-ordt 17443  df-bases 22440
This theorem is referenced by:  ordtopn3  22691  ordtcld2  22693  ordtrest  22697  ordthauslem  22878  ordthmeolem  23296  ordtrestNEW  32889
  Copyright terms: Public domain W3C validator