Step | Hyp | Ref
| Expression |
1 | | ordttopon.3 |
. . . . . . . . 9
β’ π = dom π
|
2 | | eqid 2737 |
. . . . . . . . 9
β’ ran
(π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) = ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) |
3 | | eqid 2737 |
. . . . . . . . 9
β’ ran
(π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}) = ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}) |
4 | 1, 2, 3 | ordtuni 22557 |
. . . . . . . 8
β’ (π
β π β π = βͺ ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))) |
5 | 4 | adantr 482 |
. . . . . . 7
β’ ((π
β π β§ π β π) β π = βͺ ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))) |
6 | | dmexg 7845 |
. . . . . . . . 9
β’ (π
β π β dom π
β V) |
7 | 1, 6 | eqeltrid 2842 |
. . . . . . . 8
β’ (π
β π β π β V) |
8 | 7 | adantr 482 |
. . . . . . 7
β’ ((π
β π β§ π β π) β π β V) |
9 | 5, 8 | eqeltrrd 2839 |
. . . . . 6
β’ ((π
β π β§ π β π) β βͺ
({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β V) |
10 | | uniexb 7703 |
. . . . . 6
β’ (({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β V β βͺ ({π}
βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β V) |
11 | 9, 10 | sylibr 233 |
. . . . 5
β’ ((π
β π β§ π β π) β ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β V) |
12 | | ssfii 9362 |
. . . . 5
β’ (({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β V β ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β (fiβ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))))) |
13 | 11, 12 | syl 17 |
. . . 4
β’ ((π
β π β§ π β π) β ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β (fiβ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))))) |
14 | | fibas 22343 |
. . . . 5
β’
(fiβ({π} βͺ
(ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))) β TopBases |
15 | | bastg 22332 |
. . . . 5
β’
((fiβ({π}
βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))) β TopBases β
(fiβ({π} βͺ (ran
(π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))) β (topGenβ(fiβ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))))) |
16 | 14, 15 | ax-mp 5 |
. . . 4
β’
(fiβ({π} βͺ
(ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))) β (topGenβ(fiβ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))))) |
17 | 13, 16 | sstrdi 3961 |
. . 3
β’ ((π
β π β§ π β π) β ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β (topGenβ(fiβ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))))) |
18 | 1, 2, 3 | ordtval 22556 |
. . . 4
β’ (π
β π β (ordTopβπ
) = (topGenβ(fiβ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))))) |
19 | 18 | adantr 482 |
. . 3
β’ ((π
β π β§ π β π) β (ordTopβπ
) = (topGenβ(fiβ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))))) |
20 | 17, 19 | sseqtrrd 3990 |
. 2
β’ ((π
β π β§ π β π) β ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) β (ordTopβπ
)) |
21 | | ssun2 4138 |
. . 3
β’ (ran
(π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})) β ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) |
22 | | ssun2 4138 |
. . . 4
β’ ran
(π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}) β (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})) |
23 | | simpr 486 |
. . . . . 6
β’ ((π
β π β§ π β π) β π β π) |
24 | | eqidd 2738 |
. . . . . 6
β’ ((π
β π β§ π β π) β {π₯ β π β£ Β¬ ππ
π₯} = {π₯ β π β£ Β¬ ππ
π₯}) |
25 | | breq1 5113 |
. . . . . . . . 9
β’ (π¦ = π β (π¦π
π₯ β ππ
π₯)) |
26 | 25 | notbid 318 |
. . . . . . . 8
β’ (π¦ = π β (Β¬ π¦π
π₯ β Β¬ ππ
π₯)) |
27 | 26 | rabbidv 3418 |
. . . . . . 7
β’ (π¦ = π β {π₯ β π β£ Β¬ π¦π
π₯} = {π₯ β π β£ Β¬ ππ
π₯}) |
28 | 27 | rspceeqv 3600 |
. . . . . 6
β’ ((π β π β§ {π₯ β π β£ Β¬ ππ
π₯} = {π₯ β π β£ Β¬ ππ
π₯}) β βπ¦ β π {π₯ β π β£ Β¬ ππ
π₯} = {π₯ β π β£ Β¬ π¦π
π₯}) |
29 | 23, 24, 28 | syl2anc 585 |
. . . . 5
β’ ((π
β π β§ π β π) β βπ¦ β π {π₯ β π β£ Β¬ ππ
π₯} = {π₯ β π β£ Β¬ π¦π
π₯}) |
30 | | rabexg 5293 |
. . . . . 6
β’ (π β V β {π₯ β π β£ Β¬ ππ
π₯} β V) |
31 | | eqid 2737 |
. . . . . . 7
β’ (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}) = (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}) |
32 | 31 | elrnmpt 5916 |
. . . . . 6
β’ ({π₯ β π β£ Β¬ ππ
π₯} β V β ({π₯ β π β£ Β¬ ππ
π₯} β ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}) β βπ¦ β π {π₯ β π β£ Β¬ ππ
π₯} = {π₯ β π β£ Β¬ π¦π
π₯})) |
33 | 8, 30, 32 | 3syl 18 |
. . . . 5
β’ ((π
β π β§ π β π) β ({π₯ β π β£ Β¬ ππ
π₯} β ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}) β βπ¦ β π {π₯ β π β£ Β¬ ππ
π₯} = {π₯ β π β£ Β¬ π¦π
π₯})) |
34 | 29, 33 | mpbird 257 |
. . . 4
β’ ((π
β π β§ π β π) β {π₯ β π β£ Β¬ ππ
π₯} β ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})) |
35 | 22, 34 | sselid 3947 |
. . 3
β’ ((π
β π β§ π β π) β {π₯ β π β£ Β¬ ππ
π₯} β (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯}))) |
36 | 21, 35 | sselid 3947 |
. 2
β’ ((π
β π β§ π β π) β {π₯ β π β£ Β¬ ππ
π₯} β ({π} βͺ (ran (π¦ β π β¦ {π₯ β π β£ Β¬ π₯π
π¦}) βͺ ran (π¦ β π β¦ {π₯ β π β£ Β¬ π¦π
π₯})))) |
37 | 20, 36 | sseldd 3950 |
1
β’ ((π
β π β§ π β π) β {π₯ β π β£ Β¬ ππ
π₯} β (ordTopβπ
)) |