MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn2 Structured version   Visualization version   GIF version

Theorem ordtopn2 23224
Description: A downward ray (-∞, 𝑃) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtopn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9 𝑋 = dom 𝑅
2 eqid 2740 . . . . . . . . 9 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
3 eqid 2740 . . . . . . . . 9 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
41, 2, 3ordtuni 23219 . . . . . . . 8 (𝑅𝑉𝑋 = ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
54adantr 480 . . . . . . 7 ((𝑅𝑉𝑃𝑋) → 𝑋 = ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
6 dmexg 7941 . . . . . . . . 9 (𝑅𝑉 → dom 𝑅 ∈ V)
71, 6eqeltrid 2848 . . . . . . . 8 (𝑅𝑉𝑋 ∈ V)
87adantr 480 . . . . . . 7 ((𝑅𝑉𝑃𝑋) → 𝑋 ∈ V)
95, 8eqeltrrd 2845 . . . . . 6 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
10 uniexb 7799 . . . . . 6 (({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
119, 10sylibr 234 . . . . 5 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
12 ssfii 9488 . . . . 5 (({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
1311, 12syl 17 . . . 4 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
14 fibas 23005 . . . . 5 (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases
15 bastg 22994 . . . . 5 ((fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases → (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
1614, 15ax-mp 5 . . . 4 (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
1713, 16sstrdi 4021 . . 3 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
181, 2, 3ordtval 23218 . . . 4 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
1918adantr 480 . . 3 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
2017, 19sseqtrrd 4050 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (ordTop‘𝑅))
21 ssun2 4202 . . 3 (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})) ⊆ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))
22 ssun2 4202 . . . 4 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
23 simpr 484 . . . . . 6 ((𝑅𝑉𝑃𝑋) → 𝑃𝑋)
24 eqidd 2741 . . . . . 6 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥})
25 breq1 5169 . . . . . . . . 9 (𝑦 = 𝑃 → (𝑦𝑅𝑥𝑃𝑅𝑥))
2625notbid 318 . . . . . . . 8 (𝑦 = 𝑃 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑃𝑅𝑥))
2726rabbidv 3451 . . . . . . 7 (𝑦 = 𝑃 → {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥})
2827rspceeqv 3658 . . . . . 6 ((𝑃𝑋 ∧ {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥}) → ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
2923, 24, 28syl2anc 583 . . . . 5 ((𝑅𝑉𝑃𝑋) → ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
30 rabexg 5355 . . . . . 6 (𝑋 ∈ V → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ V)
31 eqid 2740 . . . . . . 7 (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
3231elrnmpt 5981 . . . . . 6 ({𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ V → ({𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
338, 30, 323syl 18 . . . . 5 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
3429, 33mpbird 257 . . . 4 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
3522, 34sselid 4006 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))
3621, 35sselid 4006 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
3720, 36sseldd 4009 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  cun 3974  wss 3976  {csn 4648   cuni 4931   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cfv 6573  ficfi 9479  topGenctg 17497  ordTopcordt 17559  TopBasesctb 22973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-fin 9007  df-fi 9480  df-topgen 17503  df-ordt 17561  df-bases 22974
This theorem is referenced by:  ordtopn3  23225  ordtcld2  23227  ordtrest  23231  ordthauslem  23412  ordthmeolem  23830  ordtrestNEW  33867
  Copyright terms: Public domain W3C validator