![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr1v | Structured version Visualization version GIF version |
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
usgr1v | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgr1vr 29185 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) | |
2 | 1 | adantrl 714 | . . . 4 ⊢ ((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
3 | simplrl 775 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ 𝑊) | |
4 | simpr 483 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) | |
5 | 3, 4 | usgr0e 29166 | . . . . 5 ⊢ (((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
6 | 5 | ex 411 | . . . 4 ⊢ ((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph)) |
7 | 2, 6 | impbid 211 | . . 3 ⊢ ((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
8 | 7 | ex 411 | . 2 ⊢ (𝐴 ∈ V → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))) |
9 | snprc 4716 | . . 3 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
10 | simpl 481 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → 𝐺 ∈ 𝑊) | |
11 | simprr 771 | . . . . . 6 ⊢ (({𝐴} = ∅ ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (Vtx‘𝐺) = {𝐴}) | |
12 | simpl 481 | . . . . . 6 ⊢ (({𝐴} = ∅ ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → {𝐴} = ∅) | |
13 | 11, 12 | eqtrd 2766 | . . . . 5 ⊢ (({𝐴} = ∅ ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (Vtx‘𝐺) = ∅) |
14 | usgr0vb 29167 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) | |
15 | 10, 13, 14 | syl2an2 684 | . . . 4 ⊢ (({𝐴} = ∅ ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
16 | 15 | ex 411 | . . 3 ⊢ ({𝐴} = ∅ → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))) |
17 | 9, 16 | sylbi 216 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))) |
18 | 8, 17 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∅c0 4322 {csn 4623 ‘cfv 6543 Vtxcvtx 28926 iEdgciedg 28927 USGraphcusgr 29079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-dju 9934 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-n0 12516 df-xnn0 12588 df-z 12602 df-uz 12866 df-fz 13530 df-hash 14340 df-edg 28978 df-uhgr 28988 df-upgr 29012 df-uspgr 29080 df-usgr 29081 |
This theorem is referenced by: usgr1v0edg 29187 |
Copyright terms: Public domain | W3C validator |