![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr1v | Structured version Visualization version GIF version |
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
usgr1v | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgr1vr 29287 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) | |
2 | 1 | adantrl 716 | . . . 4 ⊢ ((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
3 | simplrl 777 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ 𝑊) | |
4 | simpr 484 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) | |
5 | 3, 4 | usgr0e 29268 | . . . . 5 ⊢ (((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
6 | 5 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph)) |
7 | 2, 6 | impbid 212 | . . 3 ⊢ ((𝐴 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
8 | 7 | ex 412 | . 2 ⊢ (𝐴 ∈ V → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))) |
9 | snprc 4722 | . . 3 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
10 | simpl 482 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → 𝐺 ∈ 𝑊) | |
11 | simprr 773 | . . . . . 6 ⊢ (({𝐴} = ∅ ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (Vtx‘𝐺) = {𝐴}) | |
12 | simpl 482 | . . . . . 6 ⊢ (({𝐴} = ∅ ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → {𝐴} = ∅) | |
13 | 11, 12 | eqtrd 2775 | . . . . 5 ⊢ (({𝐴} = ∅ ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (Vtx‘𝐺) = ∅) |
14 | usgr0vb 29269 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) | |
15 | 10, 13, 14 | syl2an2 686 | . . . 4 ⊢ (({𝐴} = ∅ ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
16 | 15 | ex 412 | . . 3 ⊢ ({𝐴} = ∅ → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))) |
17 | 9, 16 | sylbi 217 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))) |
18 | 8, 17 | pm2.61i 182 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 {csn 4631 ‘cfv 6563 Vtxcvtx 29028 iEdgciedg 29029 USGraphcusgr 29181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 df-edg 29080 df-uhgr 29090 df-upgr 29114 df-uspgr 29182 df-usgr 29183 |
This theorem is referenced by: usgr1v0edg 29289 |
Copyright terms: Public domain | W3C validator |