MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1v Structured version   Visualization version   GIF version

Theorem usgr1v 27651
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgr1v ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem usgr1v
StepHypRef Expression
1 usgr1vr 27650 . . . . 5 ((𝐴 ∈ V ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
21adantrl 712 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
3 simplrl 773 . . . . . 6 (((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
4 simpr 484 . . . . . 6 (((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
53, 4usgr0e 27631 . . . . 5 (((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
65ex 412 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph))
72, 6impbid 211 . . 3 ((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
87ex 412 . 2 (𝐴 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)))
9 snprc 4656 . . 3 𝐴 ∈ V ↔ {𝐴} = ∅)
10 simpl 482 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → 𝐺𝑊)
11 simprr 769 . . . . . 6 (({𝐴} = ∅ ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (Vtx‘𝐺) = {𝐴})
12 simpl 482 . . . . . 6 (({𝐴} = ∅ ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → {𝐴} = ∅)
1311, 12eqtrd 2773 . . . . 5 (({𝐴} = ∅ ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (Vtx‘𝐺) = ∅)
14 usgr0vb 27632 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
1510, 13, 14syl2an2 682 . . . 4 (({𝐴} = ∅ ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
1615ex 412 . . 3 ({𝐴} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)))
179, 16sylbi 216 . 2 𝐴 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)))
188, 17pm2.61i 182 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1537  wcel 2101  Vcvv 3434  c0 4259  {csn 4564  cfv 6447  Vtxcvtx 27394  iEdgciedg 27395  USGraphcusgr 27547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-oadd 8321  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-dju 9687  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-n0 12262  df-xnn0 12334  df-z 12348  df-uz 12611  df-fz 13268  df-hash 14073  df-edg 27446  df-uhgr 27456  df-upgr 27480  df-uspgr 27548  df-usgr 27549
This theorem is referenced by:  usgr1v0edg  27652
  Copyright terms: Public domain W3C validator