MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1v Structured version   Visualization version   GIF version

Theorem usgr1v 29240
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgr1v ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem usgr1v
StepHypRef Expression
1 usgr1vr 29239 . . . . 5 ((𝐴 ∈ V ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
21adantrl 716 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
3 simplrl 776 . . . . . 6 (((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
4 simpr 484 . . . . . 6 (((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
53, 4usgr0e 29220 . . . . 5 (((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
65ex 412 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph))
72, 6impbid 212 . . 3 ((𝐴 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
87ex 412 . 2 (𝐴 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)))
9 snprc 4698 . . 3 𝐴 ∈ V ↔ {𝐴} = ∅)
10 simpl 482 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → 𝐺𝑊)
11 simprr 772 . . . . . 6 (({𝐴} = ∅ ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (Vtx‘𝐺) = {𝐴})
12 simpl 482 . . . . . 6 (({𝐴} = ∅ ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → {𝐴} = ∅)
1311, 12eqtrd 2771 . . . . 5 (({𝐴} = ∅ ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (Vtx‘𝐺) = ∅)
14 usgr0vb 29221 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
1510, 13, 14syl2an2 686 . . . 4 (({𝐴} = ∅ ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴})) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
1615ex 412 . . 3 ({𝐴} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)))
179, 16sylbi 217 . 2 𝐴 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)))
188, 17pm2.61i 182 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  {csn 4606  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  USGraphcusgr 29133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-edg 29032  df-uhgr 29042  df-upgr 29066  df-uspgr 29134  df-usgr 29135
This theorem is referenced by:  usgr1v0edg  29241
  Copyright terms: Public domain W3C validator