MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0vb Structured version   Visualization version   GIF version

Theorem usgr0vb 29210
Description: The null graph, with no vertices, is a simple graph iff the edge function is empty. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Revised by AV, 16-Oct-2020.)
Assertion
Ref Expression
usgr0vb ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem usgr0vb
StepHypRef Expression
1 usgruhgr 29159 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
2 uhgr0vb 29045 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
31, 2imbitrid 244 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
4 simpl 482 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
5 simpr 484 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
64, 5usgr0e 29209 . . . 4 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
76ex 412 . . 3 (𝐺𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph))
87adantr 480 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph))
93, 8impbid 212 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  c0 4278  cfv 6476  Vtxcvtx 28969  iEdgciedg 28970  UHGraphcuhgr 29029  USGraphcusgr 29122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-i2m1 11069  ax-1ne0 11070  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-2 12183  df-uhgr 29031  df-upgr 29055  df-uspgr 29123  df-usgr 29124
This theorem is referenced by:  usgr0v  29214  usgr1v  29229
  Copyright terms: Public domain W3C validator