MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0vb Structured version   Visualization version   GIF version

Theorem usgr0vb 28998
Description: The null graph, with no vertices, is a simple graph iff the edge function is empty. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Revised by AV, 16-Oct-2020.)
Assertion
Ref Expression
usgr0vb ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem usgr0vb
StepHypRef Expression
1 usgruhgr 28947 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
2 uhgr0vb 28836 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
31, 2imbitrid 243 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
4 simpl 482 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
5 simpr 484 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
64, 5usgr0e 28997 . . . 4 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph)
76ex 412 . . 3 (𝐺𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph))
87adantr 480 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph))
93, 8impbid 211 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  c0 4317  cfv 6536  Vtxcvtx 28760  iEdgciedg 28761  UHGraphcuhgr 28820  USGraphcusgr 28913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-i2m1 11177  ax-1ne0 11178  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-2 12276  df-uhgr 28822  df-upgr 28846  df-uspgr 28914  df-usgr 28915
This theorem is referenced by:  usgr0v  29002  usgr1v  29017
  Copyright terms: Public domain W3C validator