MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrun Structured version   Visualization version   GIF version

Theorem usgrun 29117
Description: The union 𝑈 of two simple graphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph (not necessarily a simple graph!) with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.)
Hypotheses
Ref Expression
usgrun.g (𝜑𝐺 ∈ USGraph)
usgrun.h (𝜑𝐻 ∈ USGraph)
usgrun.e 𝐸 = (iEdg‘𝐺)
usgrun.f 𝐹 = (iEdg‘𝐻)
usgrun.vg 𝑉 = (Vtx‘𝐺)
usgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
usgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
usgrun.u (𝜑𝑈𝑊)
usgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
usgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
usgrun (𝜑𝑈 ∈ UMGraph)

Proof of Theorem usgrun
StepHypRef Expression
1 usgrun.g . . 3 (𝜑𝐺 ∈ USGraph)
2 usgrumgr 29108 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
31, 2syl 17 . 2 (𝜑𝐺 ∈ UMGraph)
4 usgrun.h . . 3 (𝜑𝐻 ∈ USGraph)
5 usgrumgr 29108 . . 3 (𝐻 ∈ USGraph → 𝐻 ∈ UMGraph)
64, 5syl 17 . 2 (𝜑𝐻 ∈ UMGraph)
7 usgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 usgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 usgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 usgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 usgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
12 usgrun.u . 2 (𝜑𝑈𝑊)
13 usgrun.v . 2 (𝜑 → (Vtx‘𝑈) = 𝑉)
14 usgrun.un . 2 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
153, 6, 7, 8, 9, 10, 11, 12, 13, 14umgrun 29047 1 (𝜑𝑈 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3912  cin 3913  c0 4296  dom cdm 5638  cfv 6511  Vtxcvtx 28923  iEdgciedg 28924  UMGraphcumgr 29008  USGraphcusgr 29076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-umgr 29010  df-usgr 29078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator