MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrun Structured version   Visualization version   GIF version

Theorem usgrun 27557
Description: The union 𝑈 of two simple graphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph (not necessarily a simple graph!) with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.)
Hypotheses
Ref Expression
usgrun.g (𝜑𝐺 ∈ USGraph)
usgrun.h (𝜑𝐻 ∈ USGraph)
usgrun.e 𝐸 = (iEdg‘𝐺)
usgrun.f 𝐹 = (iEdg‘𝐻)
usgrun.vg 𝑉 = (Vtx‘𝐺)
usgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
usgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
usgrun.u (𝜑𝑈𝑊)
usgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
usgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
usgrun (𝜑𝑈 ∈ UMGraph)

Proof of Theorem usgrun
StepHypRef Expression
1 usgrun.g . . 3 (𝜑𝐺 ∈ USGraph)
2 usgrumgr 27549 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
31, 2syl 17 . 2 (𝜑𝐺 ∈ UMGraph)
4 usgrun.h . . 3 (𝜑𝐻 ∈ USGraph)
5 usgrumgr 27549 . . 3 (𝐻 ∈ USGraph → 𝐻 ∈ UMGraph)
64, 5syl 17 . 2 (𝜑𝐻 ∈ UMGraph)
7 usgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 usgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 usgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 usgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 usgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
12 usgrun.u . 2 (𝜑𝑈𝑊)
13 usgrun.v . 2 (𝜑 → (Vtx‘𝑈) = 𝑉)
14 usgrun.un . 2 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
153, 6, 7, 8, 9, 10, 11, 12, 13, 14umgrun 27490 1 (𝜑𝑈 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cun 3885  cin 3886  c0 4256  dom cdm 5589  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  UMGraphcumgr 27451  USGraphcusgr 27519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-umgr 27453  df-usgr 27521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator