MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustexhalf Structured version   Visualization version   GIF version

Theorem ustexhalf 23108
Description: For each entourage 𝑉 there is an entourage 𝑤 that is "not more than half as large". Condition UIII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.)
Assertion
Ref Expression
ustexhalf ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)
Distinct variable groups:   𝑤,𝑈   𝑤,𝑋   𝑤,𝑉

Proof of Theorem ustexhalf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6750 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
2 isust 23101 . . . . . . 7 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
31, 2syl 17 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
43ibi 270 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
54simp3d 1146 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
6 sseq1 3926 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣𝑤𝑉𝑤))
76imbi1d 345 . . . . . . 7 (𝑣 = 𝑉 → ((𝑣𝑤𝑤𝑈) ↔ (𝑉𝑤𝑤𝑈)))
87ralbidv 3118 . . . . . 6 (𝑣 = 𝑉 → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈)))
9 ineq1 4120 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣𝑤) = (𝑉𝑤))
109eleq1d 2822 . . . . . . 7 (𝑣 = 𝑉 → ((𝑣𝑤) ∈ 𝑈 ↔ (𝑉𝑤) ∈ 𝑈))
1110ralbidv 3118 . . . . . 6 (𝑣 = 𝑉 → (∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ↔ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈))
12 sseq2 3927 . . . . . . 7 (𝑣 = 𝑉 → (( I ↾ 𝑋) ⊆ 𝑣 ↔ ( I ↾ 𝑋) ⊆ 𝑉))
13 cnveq 5742 . . . . . . . 8 (𝑣 = 𝑉𝑣 = 𝑉)
1413eleq1d 2822 . . . . . . 7 (𝑣 = 𝑉 → (𝑣𝑈𝑉𝑈))
15 sseq2 3927 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑤𝑤) ⊆ 𝑣 ↔ (𝑤𝑤) ⊆ 𝑉))
1615rexbidv 3216 . . . . . . 7 (𝑣 = 𝑉 → (∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣 ↔ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))
1712, 14, 163anbi123d 1438 . . . . . 6 (𝑣 = 𝑉 → ((( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)))
188, 11, 173anbi123d 1438 . . . . 5 (𝑣 = 𝑉 → ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))))
1918rspcv 3532 . . . 4 (𝑉𝑈 → (∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))))
205, 19mpan9 510 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)))
2120simp3d 1146 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))
2221simp3d 1146 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408  cin 3865  wss 3866  𝒫 cpw 4513   I cid 5454   × cxp 5549  ccnv 5550  cres 5553  ccom 5555  cfv 6380  UnifOncust 23097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-res 5563  df-iota 6338  df-fun 6382  df-fv 6388  df-ust 23098
This theorem is referenced by:  ustexsym  23113  ustex2sym  23114  ustex3sym  23115  trust  23127  ustuqtop4  23142  neipcfilu  23193
  Copyright terms: Public domain W3C validator