MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustexhalf Structured version   Visualization version   GIF version

Theorem ustexhalf 24219
Description: For each entourage 𝑉 there is an entourage 𝑤 that is "not more than half as large". Condition UIII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.)
Assertion
Ref Expression
ustexhalf ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)
Distinct variable groups:   𝑤,𝑈   𝑤,𝑋   𝑤,𝑉

Proof of Theorem ustexhalf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6944 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
2 isust 24212 . . . . . . 7 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
31, 2syl 17 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
43ibi 267 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
54simp3d 1145 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
6 sseq1 4009 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣𝑤𝑉𝑤))
76imbi1d 341 . . . . . . 7 (𝑣 = 𝑉 → ((𝑣𝑤𝑤𝑈) ↔ (𝑉𝑤𝑤𝑈)))
87ralbidv 3178 . . . . . 6 (𝑣 = 𝑉 → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈)))
9 ineq1 4213 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣𝑤) = (𝑉𝑤))
109eleq1d 2826 . . . . . . 7 (𝑣 = 𝑉 → ((𝑣𝑤) ∈ 𝑈 ↔ (𝑉𝑤) ∈ 𝑈))
1110ralbidv 3178 . . . . . 6 (𝑣 = 𝑉 → (∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ↔ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈))
12 sseq2 4010 . . . . . . 7 (𝑣 = 𝑉 → (( I ↾ 𝑋) ⊆ 𝑣 ↔ ( I ↾ 𝑋) ⊆ 𝑉))
13 cnveq 5884 . . . . . . . 8 (𝑣 = 𝑉𝑣 = 𝑉)
1413eleq1d 2826 . . . . . . 7 (𝑣 = 𝑉 → (𝑣𝑈𝑉𝑈))
15 sseq2 4010 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑤𝑤) ⊆ 𝑣 ↔ (𝑤𝑤) ⊆ 𝑉))
1615rexbidv 3179 . . . . . . 7 (𝑣 = 𝑉 → (∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣 ↔ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))
1712, 14, 163anbi123d 1438 . . . . . 6 (𝑣 = 𝑉 → ((( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)))
188, 11, 173anbi123d 1438 . . . . 5 (𝑣 = 𝑉 → ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))))
1918rspcv 3618 . . . 4 (𝑉𝑈 → (∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))))
205, 19mpan9 506 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)))
2120simp3d 1145 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))
2221simp3d 1145 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  𝒫 cpw 4600   I cid 5577   × cxp 5683  ccnv 5684  cres 5687  ccom 5689  cfv 6561  UnifOncust 24208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-ust 24209
This theorem is referenced by:  ustexsym  24224  ustex2sym  24225  ustex3sym  24226  trust  24238  ustuqtop4  24253  neipcfilu  24305
  Copyright terms: Public domain W3C validator