MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustexhalf Structured version   Visualization version   GIF version

Theorem ustexhalf 24133
Description: For each entourage 𝑉 there is an entourage 𝑀 that is "not more than half as large". Condition UIII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.)
Assertion
Ref Expression
ustexhalf ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉)
Distinct variable groups:   𝑀,π‘ˆ   𝑀,𝑋   𝑀,𝑉

Proof of Theorem ustexhalf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6930 . . . . . . 7 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝑋 ∈ V)
2 isust 24126 . . . . . . 7 (𝑋 ∈ V β†’ (π‘ˆ ∈ (UnifOnβ€˜π‘‹) ↔ (π‘ˆ βŠ† 𝒫 (𝑋 Γ— 𝑋) ∧ (𝑋 Γ— 𝑋) ∈ π‘ˆ ∧ βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)))))
31, 2syl 17 . . . . . 6 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (π‘ˆ ∈ (UnifOnβ€˜π‘‹) ↔ (π‘ˆ βŠ† 𝒫 (𝑋 Γ— 𝑋) ∧ (𝑋 Γ— 𝑋) ∈ π‘ˆ ∧ βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)))))
43ibi 266 . . . . 5 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (π‘ˆ βŠ† 𝒫 (𝑋 Γ— 𝑋) ∧ (𝑋 Γ— 𝑋) ∈ π‘ˆ ∧ βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣))))
54simp3d 1141 . . . 4 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)))
6 sseq1 3998 . . . . . . . 8 (𝑣 = 𝑉 β†’ (𝑣 βŠ† 𝑀 ↔ 𝑉 βŠ† 𝑀))
76imbi1d 340 . . . . . . 7 (𝑣 = 𝑉 β†’ ((𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ↔ (𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ)))
87ralbidv 3168 . . . . . 6 (𝑣 = 𝑉 β†’ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ↔ βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ)))
9 ineq1 4199 . . . . . . . 8 (𝑣 = 𝑉 β†’ (𝑣 ∩ 𝑀) = (𝑉 ∩ 𝑀))
109eleq1d 2810 . . . . . . 7 (𝑣 = 𝑉 β†’ ((𝑣 ∩ 𝑀) ∈ π‘ˆ ↔ (𝑉 ∩ 𝑀) ∈ π‘ˆ))
1110ralbidv 3168 . . . . . 6 (𝑣 = 𝑉 β†’ (βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ↔ βˆ€π‘€ ∈ π‘ˆ (𝑉 ∩ 𝑀) ∈ π‘ˆ))
12 sseq2 3999 . . . . . . 7 (𝑣 = 𝑉 β†’ (( I β†Ύ 𝑋) βŠ† 𝑣 ↔ ( I β†Ύ 𝑋) βŠ† 𝑉))
13 cnveq 5870 . . . . . . . 8 (𝑣 = 𝑉 β†’ ◑𝑣 = ◑𝑉)
1413eleq1d 2810 . . . . . . 7 (𝑣 = 𝑉 β†’ (◑𝑣 ∈ π‘ˆ ↔ ◑𝑉 ∈ π‘ˆ))
15 sseq2 3999 . . . . . . . 8 (𝑣 = 𝑉 β†’ ((𝑀 ∘ 𝑀) βŠ† 𝑣 ↔ (𝑀 ∘ 𝑀) βŠ† 𝑉))
1615rexbidv 3169 . . . . . . 7 (𝑣 = 𝑉 β†’ (βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣 ↔ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉))
1712, 14, 163anbi123d 1432 . . . . . 6 (𝑣 = 𝑉 β†’ ((( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣) ↔ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉)))
188, 11, 173anbi123d 1432 . . . . 5 (𝑣 = 𝑉 β†’ ((βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)) ↔ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑉 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉))))
1918rspcv 3597 . . . 4 (𝑉 ∈ π‘ˆ β†’ (βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)) β†’ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑉 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉))))
205, 19mpan9 505 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑉 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉)))
2120simp3d 1141 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉))
2221simp3d 1141 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  Vcvv 3463   ∩ cin 3938   βŠ† wss 3939  π’« cpw 4598   I cid 5569   Γ— cxp 5670  β—‘ccnv 5671   β†Ύ cres 5674   ∘ ccom 5676  β€˜cfv 6543  UnifOncust 24122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-res 5684  df-iota 6495  df-fun 6545  df-fv 6551  df-ust 24123
This theorem is referenced by:  ustexsym  24138  ustex2sym  24139  ustex3sym  24140  trust  24152  ustuqtop4  24167  neipcfilu  24219
  Copyright terms: Public domain W3C validator