MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustexhalf Structured version   Visualization version   GIF version

Theorem ustexhalf 23706
Description: For each entourage 𝑉 there is an entourage 𝑀 that is "not more than half as large". Condition UIII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.)
Assertion
Ref Expression
ustexhalf ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉)
Distinct variable groups:   𝑀,π‘ˆ   𝑀,𝑋   𝑀,𝑉

Proof of Theorem ustexhalf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6926 . . . . . . 7 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝑋 ∈ V)
2 isust 23699 . . . . . . 7 (𝑋 ∈ V β†’ (π‘ˆ ∈ (UnifOnβ€˜π‘‹) ↔ (π‘ˆ βŠ† 𝒫 (𝑋 Γ— 𝑋) ∧ (𝑋 Γ— 𝑋) ∈ π‘ˆ ∧ βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)))))
31, 2syl 17 . . . . . 6 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (π‘ˆ ∈ (UnifOnβ€˜π‘‹) ↔ (π‘ˆ βŠ† 𝒫 (𝑋 Γ— 𝑋) ∧ (𝑋 Γ— 𝑋) ∈ π‘ˆ ∧ βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)))))
43ibi 266 . . . . 5 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (π‘ˆ βŠ† 𝒫 (𝑋 Γ— 𝑋) ∧ (𝑋 Γ— 𝑋) ∈ π‘ˆ ∧ βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣))))
54simp3d 1144 . . . 4 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)))
6 sseq1 4006 . . . . . . . 8 (𝑣 = 𝑉 β†’ (𝑣 βŠ† 𝑀 ↔ 𝑉 βŠ† 𝑀))
76imbi1d 341 . . . . . . 7 (𝑣 = 𝑉 β†’ ((𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ↔ (𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ)))
87ralbidv 3177 . . . . . 6 (𝑣 = 𝑉 β†’ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ↔ βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ)))
9 ineq1 4204 . . . . . . . 8 (𝑣 = 𝑉 β†’ (𝑣 ∩ 𝑀) = (𝑉 ∩ 𝑀))
109eleq1d 2818 . . . . . . 7 (𝑣 = 𝑉 β†’ ((𝑣 ∩ 𝑀) ∈ π‘ˆ ↔ (𝑉 ∩ 𝑀) ∈ π‘ˆ))
1110ralbidv 3177 . . . . . 6 (𝑣 = 𝑉 β†’ (βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ↔ βˆ€π‘€ ∈ π‘ˆ (𝑉 ∩ 𝑀) ∈ π‘ˆ))
12 sseq2 4007 . . . . . . 7 (𝑣 = 𝑉 β†’ (( I β†Ύ 𝑋) βŠ† 𝑣 ↔ ( I β†Ύ 𝑋) βŠ† 𝑉))
13 cnveq 5871 . . . . . . . 8 (𝑣 = 𝑉 β†’ ◑𝑣 = ◑𝑉)
1413eleq1d 2818 . . . . . . 7 (𝑣 = 𝑉 β†’ (◑𝑣 ∈ π‘ˆ ↔ ◑𝑉 ∈ π‘ˆ))
15 sseq2 4007 . . . . . . . 8 (𝑣 = 𝑉 β†’ ((𝑀 ∘ 𝑀) βŠ† 𝑣 ↔ (𝑀 ∘ 𝑀) βŠ† 𝑉))
1615rexbidv 3178 . . . . . . 7 (𝑣 = 𝑉 β†’ (βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣 ↔ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉))
1712, 14, 163anbi123d 1436 . . . . . 6 (𝑣 = 𝑉 β†’ ((( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣) ↔ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉)))
188, 11, 173anbi123d 1436 . . . . 5 (𝑣 = 𝑉 β†’ ((βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)) ↔ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑉 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉))))
1918rspcv 3608 . . . 4 (𝑉 ∈ π‘ˆ β†’ (βˆ€π‘£ ∈ π‘ˆ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑣 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑣 ∧ ◑𝑣 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑣)) β†’ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑉 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉))))
205, 19mpan9 507 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ (βˆ€π‘€ ∈ 𝒫 (𝑋 Γ— 𝑋)(𝑉 βŠ† 𝑀 β†’ 𝑀 ∈ π‘ˆ) ∧ βˆ€π‘€ ∈ π‘ˆ (𝑉 ∩ 𝑀) ∈ π‘ˆ ∧ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉)))
2120simp3d 1144 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ (( I β†Ύ 𝑋) βŠ† 𝑉 ∧ ◑𝑉 ∈ π‘ˆ ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉))
2221simp3d 1144 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (𝑀 ∘ 𝑀) βŠ† 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601   I cid 5572   Γ— cxp 5673  β—‘ccnv 5674   β†Ύ cres 5677   ∘ ccom 5679  β€˜cfv 6540  UnifOncust 23695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-res 5687  df-iota 6492  df-fun 6542  df-fv 6548  df-ust 23696
This theorem is referenced by:  ustexsym  23711  ustex2sym  23712  ustex3sym  23713  trust  23725  ustuqtop4  23740  neipcfilu  23792
  Copyright terms: Public domain W3C validator