Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustdiag Structured version   Visualization version   GIF version

Theorem ustdiag 22820
 Description: The diagonal set is included in any entourage, i.e. any point is 𝑉 -close to itself. Condition UI of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.)
Assertion
Ref Expression
ustdiag ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)

Proof of Theorem ustdiag
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6706 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
2 isust 22815 . . . . . . 7 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
31, 2syl 17 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
43ibi 269 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
54simp3d 1140 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
6 sseq1 3995 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣𝑤𝑉𝑤))
76imbi1d 344 . . . . . . 7 (𝑣 = 𝑉 → ((𝑣𝑤𝑤𝑈) ↔ (𝑉𝑤𝑤𝑈)))
87ralbidv 3200 . . . . . 6 (𝑣 = 𝑉 → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈)))
9 ineq1 4184 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣𝑤) = (𝑉𝑤))
109eleq1d 2900 . . . . . . 7 (𝑣 = 𝑉 → ((𝑣𝑤) ∈ 𝑈 ↔ (𝑉𝑤) ∈ 𝑈))
1110ralbidv 3200 . . . . . 6 (𝑣 = 𝑉 → (∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ↔ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈))
12 sseq2 3996 . . . . . . 7 (𝑣 = 𝑉 → (( I ↾ 𝑋) ⊆ 𝑣 ↔ ( I ↾ 𝑋) ⊆ 𝑉))
13 cnveq 5747 . . . . . . . 8 (𝑣 = 𝑉𝑣 = 𝑉)
1413eleq1d 2900 . . . . . . 7 (𝑣 = 𝑉 → (𝑣𝑈𝑉𝑈))
15 sseq2 3996 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑤𝑤) ⊆ 𝑣 ↔ (𝑤𝑤) ⊆ 𝑉))
1615rexbidv 3300 . . . . . . 7 (𝑣 = 𝑉 → (∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣 ↔ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))
1712, 14, 163anbi123d 1432 . . . . . 6 (𝑣 = 𝑉 → ((( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)))
188, 11, 173anbi123d 1432 . . . . 5 (𝑣 = 𝑉 → ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))))
1918rspcv 3621 . . . 4 (𝑉𝑈 → (∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))))
205, 19mpan9 509 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)))
2120simp3d 1140 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))
2221simp1d 1138 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1536   ∈ wcel 2113  ∀wral 3141  ∃wrex 3142  Vcvv 3497   ∩ cin 3938   ⊆ wss 3939  𝒫 cpw 4542   I cid 5462   × cxp 5556  ◡ccnv 5557   ↾ cres 5560   ∘ ccom 5562  ‘cfv 6358  UnifOncust 22811 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-res 5570  df-iota 6317  df-fun 6360  df-fv 6366  df-ust 22812 This theorem is referenced by:  ustssco  22826  ustref  22830  ustelimasn  22834  trust  22841  ustuqtop3  22855
 Copyright terms: Public domain W3C validator