| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elfvex 6944 | . . . . . . 7
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | 
| 2 |  | isust 24212 | . . . . . . 7
⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | 
| 3 | 1, 2 | syl 17 | . . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | 
| 4 | 3 | ibi 267 | . . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) | 
| 5 | 4 | simp3d 1145 | . . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))) | 
| 6 |  | sseq1 4009 | . . . . . . . 8
⊢ (𝑣 = 𝑉 → (𝑣 ⊆ 𝑤 ↔ 𝑉 ⊆ 𝑤)) | 
| 7 | 6 | imbi1d 341 | . . . . . . 7
⊢ (𝑣 = 𝑉 → ((𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ↔ (𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈))) | 
| 8 | 7 | ralbidv 3178 | . . . . . 6
⊢ (𝑣 = 𝑉 → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈))) | 
| 9 |  | ineq1 4213 | . . . . . . . 8
⊢ (𝑣 = 𝑉 → (𝑣 ∩ 𝑤) = (𝑉 ∩ 𝑤)) | 
| 10 | 9 | eleq1d 2826 | . . . . . . 7
⊢ (𝑣 = 𝑉 → ((𝑣 ∩ 𝑤) ∈ 𝑈 ↔ (𝑉 ∩ 𝑤) ∈ 𝑈)) | 
| 11 | 10 | ralbidv 3178 | . . . . . 6
⊢ (𝑣 = 𝑉 → (∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ↔ ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈)) | 
| 12 |  | sseq2 4010 | . . . . . . 7
⊢ (𝑣 = 𝑉 → (( I ↾ 𝑋) ⊆ 𝑣 ↔ ( I ↾ 𝑋) ⊆ 𝑉)) | 
| 13 |  | cnveq 5884 | . . . . . . . 8
⊢ (𝑣 = 𝑉 → ◡𝑣 = ◡𝑉) | 
| 14 | 13 | eleq1d 2826 | . . . . . . 7
⊢ (𝑣 = 𝑉 → (◡𝑣 ∈ 𝑈 ↔ ◡𝑉 ∈ 𝑈)) | 
| 15 |  | sseq2 4010 | . . . . . . . 8
⊢ (𝑣 = 𝑉 → ((𝑤 ∘ 𝑤) ⊆ 𝑣 ↔ (𝑤 ∘ 𝑤) ⊆ 𝑉)) | 
| 16 | 15 | rexbidv 3179 | . . . . . . 7
⊢ (𝑣 = 𝑉 → (∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣 ↔ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉)) | 
| 17 | 12, 14, 16 | 3anbi123d 1438 | . . . . . 6
⊢ (𝑣 = 𝑉 → ((( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉))) | 
| 18 | 8, 11, 17 | 3anbi123d 1438 | . . . . 5
⊢ (𝑣 = 𝑉 → ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉)))) | 
| 19 | 18 | rspcv 3618 | . . . 4
⊢ (𝑉 ∈ 𝑈 → (∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉)))) | 
| 20 | 5, 19 | mpan9 506 | . . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉))) | 
| 21 | 20 | simp3d 1145 | . 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉)) | 
| 22 | 21 | simp1d 1143 | 1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) |