Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzred Structured version   Visualization version   GIF version

Theorem uzred 45446
Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzred.1 𝑍 = (ℤ𝑀)
uzred.2 (𝜑𝐴𝑍)
Assertion
Ref Expression
uzred (𝜑𝐴 ∈ ℝ)

Proof of Theorem uzred
StepHypRef Expression
1 zssre 12543 . 2 ℤ ⊆ ℝ
2 uzred.1 . . 3 𝑍 = (ℤ𝑀)
3 uzred.2 . . 3 (𝜑𝐴𝑍)
42, 3eluzelz2d 45416 . 2 (𝜑𝐴 ∈ ℤ)
51, 4sselid 3947 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  cr 11074  cz 12536  cuz 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-neg 11415  df-z 12537  df-uz 12801
This theorem is referenced by:  uzxrd  45465  liminflelimsupuz  45790
  Copyright terms: Public domain W3C validator