|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uzred | Structured version Visualization version GIF version | ||
| Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| uzred.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) | 
| uzred.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑍) | 
| Ref | Expression | 
|---|---|
| uzred | ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zssre 12620 | . 2 ⊢ ℤ ⊆ ℝ | |
| 2 | uzred.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | uzred.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑍) | |
| 4 | 2, 3 | eluzelz2d 45424 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| 5 | 1, 4 | sselid 3981 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 ℝcr 11154 ℤcz 12613 ℤ≥cuz 12878 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-cnex 11211 ax-resscn 11212 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-neg 11495 df-z 12614 df-uz 12879 | 
| This theorem is referenced by: uzxrd 45473 liminflelimsupuz 45800 | 
| Copyright terms: Public domain | W3C validator |