Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzred | Structured version Visualization version GIF version |
Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
uzred.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
uzred.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑍) |
Ref | Expression |
---|---|
uzred | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre 12419 | . 2 ⊢ ℤ ⊆ ℝ | |
2 | uzred.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | uzred.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑍) | |
4 | 2, 3 | eluzelz2d 43277 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
5 | 1, 4 | sselid 3929 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 ℝcr 10963 ℤcz 12412 ℤ≥cuz 12675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-cnex 11020 ax-resscn 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fv 6481 df-ov 7332 df-neg 11301 df-z 12413 df-uz 12676 |
This theorem is referenced by: uzxrd 43326 liminflelimsupuz 43651 |
Copyright terms: Public domain | W3C validator |