Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzred Structured version   Visualization version   GIF version

Theorem uzred 45460
Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzred.1 𝑍 = (ℤ𝑀)
uzred.2 (𝜑𝐴𝑍)
Assertion
Ref Expression
uzred (𝜑𝐴 ∈ ℝ)

Proof of Theorem uzred
StepHypRef Expression
1 zssre 12467 . 2 ℤ ⊆ ℝ
2 uzred.1 . . 3 𝑍 = (ℤ𝑀)
3 uzred.2 . . 3 (𝜑𝐴𝑍)
42, 3eluzelz2d 45430 . 2 (𝜑𝐴 ∈ ℤ)
51, 4sselid 3930 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cfv 6477  cr 10997  cz 12460  cuz 12724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-cnex 11054  ax-resscn 11055
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-neg 11339  df-z 12461  df-uz 12725
This theorem is referenced by:  uzxrd  45479  liminflelimsupuz  45802
  Copyright terms: Public domain W3C validator