Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzred Structured version   Visualization version   GIF version

Theorem uzred 41937
Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzred.1 𝑍 = (ℤ𝑀)
uzred.2 (𝜑𝐴𝑍)
Assertion
Ref Expression
uzred (𝜑𝐴 ∈ ℝ)

Proof of Theorem uzred
StepHypRef Expression
1 zssre 11976 . 2 ℤ ⊆ ℝ
2 uzred.1 . . 3 𝑍 = (ℤ𝑀)
3 uzred.2 . . 3 (𝜑𝐴𝑍)
42, 3eluzelz2d 41907 . 2 (𝜑𝐴 ∈ ℤ)
51, 4sseldi 3949 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cfv 6338  cr 10523  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-cnex 10580  ax-resscn 10581
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-fv 6346  df-ov 7143  df-neg 10860  df-z 11970  df-uz 12232
This theorem is referenced by:  uzxrd  41958  liminflelimsupuz  42284
  Copyright terms: Public domain W3C validator