| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsupuz | Structured version Visualization version GIF version | ||
| Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminflelimsupuz.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminflelimsupuz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminflelimsupuz.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| liminflelimsupuz | ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminflelimsupuz.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 2 | liminflelimsupuz.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | fvexi 6831 | . . . 4 ⊢ 𝑍 ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
| 5 | 1, 4 | fexd 7156 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | liminflelimsupuz.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | 6, 2 | uzubico2 45608 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍) |
| 8 | 1 | ffnd 6647 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 Fn 𝑍) |
| 10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 11 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
| 12 | 2, 11 | uzxrd 45500 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ*) |
| 13 | pnfxr 11161 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
| 14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → +∞ ∈ ℝ*) |
| 15 | 12 | xrleidd 13046 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ≤ 𝑗) |
| 16 | 2, 11 | uzred 45481 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ) |
| 17 | ltpnf 13014 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ ℝ → 𝑗 < +∞) | |
| 18 | 16, 17 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 < +∞) |
| 19 | 12, 14, 12, 15, 18 | elicod 13290 | . . . . . . . . . . 11 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (𝑗[,)+∞)) |
| 20 | 19 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (𝑗[,)+∞)) |
| 21 | 9, 10, 20 | fnfvimad 7163 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑗[,)+∞))) |
| 22 | 1 | ffvelcdmda 7012 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ*) |
| 23 | 21, 22 | elind 4145 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)) |
| 24 | 23 | ne0d 4287 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 25 | 24 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 26 | 25 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 27 | 26 | reximdva 3145 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 28 | 27 | ralimdva 3144 | . . 3 ⊢ (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 29 | 7, 28 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 30 | 5, 29 | liminflelimsup 45814 | 1 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∩ cin 3896 ∅c0 4278 class class class wbr 5086 “ cima 5614 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 +∞cpnf 11138 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 ℤcz 12463 ℤ≥cuz 12727 [,)cico 13242 lim supclsp 15372 lim infclsi 45789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-ioo 13244 df-ico 13246 df-fl 13691 df-ceil 13692 df-limsup 15373 df-liminf 45790 |
| This theorem is referenced by: liminfgelimsupuz 45826 liminflimsupclim 45845 xlimliminflimsup 45900 |
| Copyright terms: Public domain | W3C validator |