Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsupuz Structured version   Visualization version   GIF version

Theorem liminflelimsupuz 42793
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsupuz.1 (𝜑𝑀 ∈ ℤ)
liminflelimsupuz.2 𝑍 = (ℤ𝑀)
liminflelimsupuz.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminflelimsupuz (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))

Proof of Theorem liminflelimsupuz
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflelimsupuz.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
2 liminflelimsupuz.2 . . . . 5 𝑍 = (ℤ𝑀)
32fvexi 6672 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
51, 4fexd 6981 . 2 (𝜑𝐹 ∈ V)
6 liminflelimsupuz.1 . . . 4 (𝜑𝑀 ∈ ℤ)
76, 2uzubico2 42573 . . 3 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍)
81ffnd 6499 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
98adantr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝐹 Fn 𝑍)
10 simpr 488 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
11 id 22 . . . . . . . . . . . . 13 (𝑗𝑍𝑗𝑍)
122, 11uzxrd 42467 . . . . . . . . . . . 12 (𝑗𝑍𝑗 ∈ ℝ*)
13 pnfxr 10733 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 (𝑗𝑍 → +∞ ∈ ℝ*)
1512xrleidd 12586 . . . . . . . . . . . 12 (𝑗𝑍𝑗𝑗)
162, 11uzred 42446 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ ℝ)
17 ltpnf 12556 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ → 𝑗 < +∞)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑗𝑍𝑗 < +∞)
1912, 14, 12, 15, 18elicod 12829 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (𝑗[,)+∞))
2019adantl 485 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ (𝑗[,)+∞))
219, 10, 20fnfvimad 6988 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ (𝐹 “ (𝑗[,)+∞)))
221ffvelrnda 6842 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
2321, 22elind 4099 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
2423ne0d 4234 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
2524ex 416 . . . . . 6 (𝜑 → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2625ad2antrr 725 . . . . 5 (((𝜑𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2726reximdva 3198 . . . 4 ((𝜑𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2827ralimdva 3108 . . 3 (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
297, 28mpd 15 . 2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
305, 29liminflelimsup 42784 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  Vcvv 3409  cin 3857  c0 4225   class class class wbr 5032  cima 5527   Fn wfn 6330  wf 6331  cfv 6335  (class class class)co 7150  cr 10574  +∞cpnf 10710  *cxr 10712   < clt 10713  cle 10714  cz 12020  cuz 12282  [,)cico 12781  lim supclsp 14875  lim infclsi 42759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-ioo 12783  df-ico 12785  df-fl 13211  df-ceil 13212  df-limsup 14876  df-liminf 42760
This theorem is referenced by:  liminfgelimsupuz  42796  liminflimsupclim  42815  xlimliminflimsup  42870
  Copyright terms: Public domain W3C validator