Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsupuz Structured version   Visualization version   GIF version

Theorem liminflelimsupuz 43921
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsupuz.1 (𝜑𝑀 ∈ ℤ)
liminflelimsupuz.2 𝑍 = (ℤ𝑀)
liminflelimsupuz.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminflelimsupuz (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))

Proof of Theorem liminflelimsupuz
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflelimsupuz.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
2 liminflelimsupuz.2 . . . . 5 𝑍 = (ℤ𝑀)
32fvexi 6854 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
51, 4fexd 7174 . 2 (𝜑𝐹 ∈ V)
6 liminflelimsupuz.1 . . . 4 (𝜑𝑀 ∈ ℤ)
76, 2uzubico2 43703 . . 3 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍)
81ffnd 6667 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
98adantr 482 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝐹 Fn 𝑍)
10 simpr 486 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
11 id 22 . . . . . . . . . . . . 13 (𝑗𝑍𝑗𝑍)
122, 11uzxrd 43596 . . . . . . . . . . . 12 (𝑗𝑍𝑗 ∈ ℝ*)
13 pnfxr 11168 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 (𝑗𝑍 → +∞ ∈ ℝ*)
1512xrleidd 13026 . . . . . . . . . . . 12 (𝑗𝑍𝑗𝑗)
162, 11uzred 43577 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ ℝ)
17 ltpnf 12996 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ → 𝑗 < +∞)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑗𝑍𝑗 < +∞)
1912, 14, 12, 15, 18elicod 13269 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (𝑗[,)+∞))
2019adantl 483 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ (𝑗[,)+∞))
219, 10, 20fnfvimad 7181 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ (𝐹 “ (𝑗[,)+∞)))
221ffvelcdmda 7032 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
2321, 22elind 4153 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
2423ne0d 4294 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
2524ex 414 . . . . . 6 (𝜑 → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2625ad2antrr 725 . . . . 5 (((𝜑𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2726reximdva 3164 . . . 4 ((𝜑𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2827ralimdva 3163 . . 3 (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
297, 28mpd 15 . 2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
305, 29liminflelimsup 43912 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2942  wral 3063  wrex 3072  Vcvv 3444  cin 3908  c0 4281   class class class wbr 5104  cima 5635   Fn wfn 6489  wf 6490  cfv 6494  (class class class)co 7352  cr 11009  +∞cpnf 11145  *cxr 11147   < clt 11148  cle 11149  cz 12458  cuz 12722  [,)cico 13221  lim supclsp 15312  lim infclsi 43887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-1st 7914  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-er 8607  df-en 8843  df-dom 8844  df-sdom 8845  df-sup 9337  df-inf 9338  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-nn 12113  df-n0 12373  df-z 12459  df-uz 12723  df-ioo 13223  df-ico 13225  df-fl 13652  df-ceil 13653  df-limsup 15313  df-liminf 43888
This theorem is referenced by:  liminfgelimsupuz  43924  liminflimsupclim  43943  xlimliminflimsup  43998
  Copyright terms: Public domain W3C validator