![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsupuz | Structured version Visualization version GIF version |
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminflelimsupuz.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminflelimsupuz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminflelimsupuz.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
liminflelimsupuz | ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflelimsupuz.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
2 | liminflelimsupuz.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | fvexi 6920 | . . . 4 ⊢ 𝑍 ∈ V |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
5 | 1, 4 | fexd 7246 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | liminflelimsupuz.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | 6, 2 | uzubico2 45522 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍) |
8 | 1 | ffnd 6737 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 Fn 𝑍) |
10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
11 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
12 | 2, 11 | uzxrd 45411 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ*) |
13 | pnfxr 11312 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → +∞ ∈ ℝ*) |
15 | 12 | xrleidd 13190 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ≤ 𝑗) |
16 | 2, 11 | uzred 45392 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ) |
17 | ltpnf 13159 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ ℝ → 𝑗 < +∞) | |
18 | 16, 17 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 < +∞) |
19 | 12, 14, 12, 15, 18 | elicod 13433 | . . . . . . . . . . 11 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (𝑗[,)+∞)) |
20 | 19 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (𝑗[,)+∞)) |
21 | 9, 10, 20 | fnfvimad 7253 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑗[,)+∞))) |
22 | 1 | ffvelcdmda 7103 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ*) |
23 | 21, 22 | elind 4209 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)) |
24 | 23 | ne0d 4347 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
25 | 24 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
26 | 25 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
27 | 26 | reximdva 3165 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
28 | 27 | ralimdva 3164 | . . 3 ⊢ (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
29 | 7, 28 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
30 | 5, 29 | liminflelimsup 45731 | 1 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 Vcvv 3477 ∩ cin 3961 ∅c0 4338 class class class wbr 5147 “ cima 5691 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 +∞cpnf 11289 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 ℤcz 12610 ℤ≥cuz 12875 [,)cico 13385 lim supclsp 15502 lim infclsi 45706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-ioo 13387 df-ico 13389 df-fl 13828 df-ceil 13829 df-limsup 15503 df-liminf 45707 |
This theorem is referenced by: liminfgelimsupuz 45743 liminflimsupclim 45762 xlimliminflimsup 45817 |
Copyright terms: Public domain | W3C validator |