![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsupuz | Structured version Visualization version GIF version |
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminflelimsupuz.1 | β’ (π β π β β€) |
liminflelimsupuz.2 | β’ π = (β€β₯βπ) |
liminflelimsupuz.3 | β’ (π β πΉ:πβΆβ*) |
Ref | Expression |
---|---|
liminflelimsupuz | β’ (π β (lim infβπΉ) β€ (lim supβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflelimsupuz.3 | . . 3 β’ (π β πΉ:πβΆβ*) | |
2 | liminflelimsupuz.2 | . . . . 5 β’ π = (β€β₯βπ) | |
3 | 2 | fvexi 6905 | . . . 4 β’ π β V |
4 | 3 | a1i 11 | . . 3 β’ (π β π β V) |
5 | 1, 4 | fexd 7233 | . 2 β’ (π β πΉ β V) |
6 | liminflelimsupuz.1 | . . . 4 β’ (π β π β β€) | |
7 | 6, 2 | uzubico2 44878 | . . 3 β’ (π β βπ β β βπ β (π[,)+β)π β π) |
8 | 1 | ffnd 6717 | . . . . . . . . . . 11 β’ (π β πΉ Fn π) |
9 | 8 | adantr 480 | . . . . . . . . . 10 β’ ((π β§ π β π) β πΉ Fn π) |
10 | simpr 484 | . . . . . . . . . 10 β’ ((π β§ π β π) β π β π) | |
11 | id 22 | . . . . . . . . . . . . 13 β’ (π β π β π β π) | |
12 | 2, 11 | uzxrd 44767 | . . . . . . . . . . . 12 β’ (π β π β π β β*) |
13 | pnfxr 11290 | . . . . . . . . . . . . 13 β’ +β β β* | |
14 | 13 | a1i 11 | . . . . . . . . . . . 12 β’ (π β π β +β β β*) |
15 | 12 | xrleidd 13155 | . . . . . . . . . . . 12 β’ (π β π β π β€ π) |
16 | 2, 11 | uzred 44748 | . . . . . . . . . . . . 13 β’ (π β π β π β β) |
17 | ltpnf 13124 | . . . . . . . . . . . . 13 β’ (π β β β π < +β) | |
18 | 16, 17 | syl 17 | . . . . . . . . . . . 12 β’ (π β π β π < +β) |
19 | 12, 14, 12, 15, 18 | elicod 13398 | . . . . . . . . . . 11 β’ (π β π β π β (π[,)+β)) |
20 | 19 | adantl 481 | . . . . . . . . . 10 β’ ((π β§ π β π) β π β (π[,)+β)) |
21 | 9, 10, 20 | fnfvimad 7240 | . . . . . . . . 9 β’ ((π β§ π β π) β (πΉβπ) β (πΉ β (π[,)+β))) |
22 | 1 | ffvelcdmda 7088 | . . . . . . . . 9 β’ ((π β§ π β π) β (πΉβπ) β β*) |
23 | 21, 22 | elind 4190 | . . . . . . . 8 β’ ((π β§ π β π) β (πΉβπ) β ((πΉ β (π[,)+β)) β© β*)) |
24 | 23 | ne0d 4331 | . . . . . . 7 β’ ((π β§ π β π) β ((πΉ β (π[,)+β)) β© β*) β β ) |
25 | 24 | ex 412 | . . . . . 6 β’ (π β (π β π β ((πΉ β (π[,)+β)) β© β*) β β )) |
26 | 25 | ad2antrr 725 | . . . . 5 β’ (((π β§ π β β) β§ π β (π[,)+β)) β (π β π β ((πΉ β (π[,)+β)) β© β*) β β )) |
27 | 26 | reximdva 3163 | . . . 4 β’ ((π β§ π β β) β (βπ β (π[,)+β)π β π β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β )) |
28 | 27 | ralimdva 3162 | . . 3 β’ (π β (βπ β β βπ β (π[,)+β)π β π β βπ β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β )) |
29 | 7, 28 | mpd 15 | . 2 β’ (π β βπ β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β ) |
30 | 5, 29 | liminflelimsup 45087 | 1 β’ (π β (lim infβπΉ) β€ (lim supβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wne 2935 βwral 3056 βwrex 3065 Vcvv 3469 β© cin 3943 β c0 4318 class class class wbr 5142 β cima 5675 Fn wfn 6537 βΆwf 6538 βcfv 6542 (class class class)co 7414 βcr 11129 +βcpnf 11267 β*cxr 11269 < clt 11270 β€ cle 11271 β€cz 12580 β€β₯cuz 12844 [,)cico 13350 lim supclsp 15438 lim infclsi 45062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-ioo 13352 df-ico 13354 df-fl 13781 df-ceil 13782 df-limsup 15439 df-liminf 45063 |
This theorem is referenced by: liminfgelimsupuz 45099 liminflimsupclim 45118 xlimliminflimsup 45173 |
Copyright terms: Public domain | W3C validator |