| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsupuz | Structured version Visualization version GIF version | ||
| Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminflelimsupuz.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminflelimsupuz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminflelimsupuz.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| liminflelimsupuz | ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminflelimsupuz.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 2 | liminflelimsupuz.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | fvexi 6890 | . . . 4 ⊢ 𝑍 ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
| 5 | 1, 4 | fexd 7219 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | liminflelimsupuz.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | 6, 2 | uzubico2 45597 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍) |
| 8 | 1 | ffnd 6707 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 Fn 𝑍) |
| 10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 11 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
| 12 | 2, 11 | uzxrd 45489 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ*) |
| 13 | pnfxr 11289 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
| 14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → +∞ ∈ ℝ*) |
| 15 | 12 | xrleidd 13168 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ≤ 𝑗) |
| 16 | 2, 11 | uzred 45470 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ) |
| 17 | ltpnf 13136 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ ℝ → 𝑗 < +∞) | |
| 18 | 16, 17 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 < +∞) |
| 19 | 12, 14, 12, 15, 18 | elicod 13412 | . . . . . . . . . . 11 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (𝑗[,)+∞)) |
| 20 | 19 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (𝑗[,)+∞)) |
| 21 | 9, 10, 20 | fnfvimad 7226 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑗[,)+∞))) |
| 22 | 1 | ffvelcdmda 7074 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ*) |
| 23 | 21, 22 | elind 4175 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)) |
| 24 | 23 | ne0d 4317 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 25 | 24 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 26 | 25 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 27 | 26 | reximdva 3153 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 28 | 27 | ralimdva 3152 | . . 3 ⊢ (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 29 | 7, 28 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 30 | 5, 29 | liminflelimsup 45805 | 1 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ∩ cin 3925 ∅c0 4308 class class class wbr 5119 “ cima 5657 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 +∞cpnf 11266 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 ℤcz 12588 ℤ≥cuz 12852 [,)cico 13364 lim supclsp 15486 lim infclsi 45780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-ioo 13366 df-ico 13368 df-fl 13809 df-ceil 13810 df-limsup 15487 df-liminf 45781 |
| This theorem is referenced by: liminfgelimsupuz 45817 liminflimsupclim 45836 xlimliminflimsup 45891 |
| Copyright terms: Public domain | W3C validator |