Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsupuz Structured version   Visualization version   GIF version

Theorem liminflelimsupuz 42793
 Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsupuz.1 (𝜑𝑀 ∈ ℤ)
liminflelimsupuz.2 𝑍 = (ℤ𝑀)
liminflelimsupuz.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminflelimsupuz (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))

Proof of Theorem liminflelimsupuz
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflelimsupuz.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
2 liminflelimsupuz.2 . . . . 5 𝑍 = (ℤ𝑀)
32fvexi 6672 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
51, 4fexd 6981 . 2 (𝜑𝐹 ∈ V)
6 liminflelimsupuz.1 . . . 4 (𝜑𝑀 ∈ ℤ)
76, 2uzubico2 42573 . . 3 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍)
81ffnd 6499 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
98adantr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝐹 Fn 𝑍)
10 simpr 488 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
11 id 22 . . . . . . . . . . . . 13 (𝑗𝑍𝑗𝑍)
122, 11uzxrd 42467 . . . . . . . . . . . 12 (𝑗𝑍𝑗 ∈ ℝ*)
13 pnfxr 10733 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 (𝑗𝑍 → +∞ ∈ ℝ*)
1512xrleidd 12586 . . . . . . . . . . . 12 (𝑗𝑍𝑗𝑗)
162, 11uzred 42446 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ ℝ)
17 ltpnf 12556 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ → 𝑗 < +∞)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑗𝑍𝑗 < +∞)
1912, 14, 12, 15, 18elicod 12829 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (𝑗[,)+∞))
2019adantl 485 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ (𝑗[,)+∞))
219, 10, 20fnfvimad 6988 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ (𝐹 “ (𝑗[,)+∞)))
221ffvelrnda 6842 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
2321, 22elind 4099 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
2423ne0d 4234 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
2524ex 416 . . . . . 6 (𝜑 → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2625ad2antrr 725 . . . . 5 (((𝜑𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2726reximdva 3198 . . . 4 ((𝜑𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2827ralimdva 3108 . . 3 (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
297, 28mpd 15 . 2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
305, 29liminflelimsup 42784 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  Vcvv 3409   ∩ cin 3857  ∅c0 4225   class class class wbr 5032   “ cima 5527   Fn wfn 6330  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  ℝcr 10574  +∞cpnf 10710  ℝ*cxr 10712   < clt 10713   ≤ cle 10714  ℤcz 12020  ℤ≥cuz 12282  [,)cico 12781  lim supclsp 14875  lim infclsi 42759 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-ioo 12783  df-ico 12785  df-fl 13211  df-ceil 13212  df-limsup 14876  df-liminf 42760 This theorem is referenced by:  liminfgelimsupuz  42796  liminflimsupclim  42815  xlimliminflimsup  42870
 Copyright terms: Public domain W3C validator