Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsupuz Structured version   Visualization version   GIF version

Theorem liminflelimsupuz 45706
Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsupuz.1 (𝜑𝑀 ∈ ℤ)
liminflelimsupuz.2 𝑍 = (ℤ𝑀)
liminflelimsupuz.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminflelimsupuz (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))

Proof of Theorem liminflelimsupuz
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflelimsupuz.3 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
2 liminflelimsupuz.2 . . . . 5 𝑍 = (ℤ𝑀)
32fvexi 6934 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
51, 4fexd 7264 . 2 (𝜑𝐹 ∈ V)
6 liminflelimsupuz.1 . . . 4 (𝜑𝑀 ∈ ℤ)
76, 2uzubico2 45488 . . 3 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍)
81ffnd 6748 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑍)
98adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝐹 Fn 𝑍)
10 simpr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
11 id 22 . . . . . . . . . . . . 13 (𝑗𝑍𝑗𝑍)
122, 11uzxrd 45377 . . . . . . . . . . . 12 (𝑗𝑍𝑗 ∈ ℝ*)
13 pnfxr 11344 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . . 12 (𝑗𝑍 → +∞ ∈ ℝ*)
1512xrleidd 13214 . . . . . . . . . . . 12 (𝑗𝑍𝑗𝑗)
162, 11uzred 45358 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ ℝ)
17 ltpnf 13183 . . . . . . . . . . . . 13 (𝑗 ∈ ℝ → 𝑗 < +∞)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑗𝑍𝑗 < +∞)
1912, 14, 12, 15, 18elicod 13457 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (𝑗[,)+∞))
2019adantl 481 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ (𝑗[,)+∞))
219, 10, 20fnfvimad 7271 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ (𝐹 “ (𝑗[,)+∞)))
221ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
2321, 22elind 4223 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*))
2423ne0d 4365 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
2524ex 412 . . . . . 6 (𝜑 → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2625ad2antrr 725 . . . . 5 (((𝜑𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2726reximdva 3174 . . . 4 ((𝜑𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
2827ralimdva 3173 . . 3 (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
297, 28mpd 15 . 2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
305, 29liminflelimsup 45697 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  c0 4352   class class class wbr 5166  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  [,)cico 13409  lim supclsp 15516  lim infclsi 45672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-ioo 13411  df-ico 13413  df-fl 13843  df-ceil 13844  df-limsup 15517  df-liminf 45673
This theorem is referenced by:  liminfgelimsupuz  45709  liminflimsupclim  45728  xlimliminflimsup  45783
  Copyright terms: Public domain W3C validator