| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsupuz | Structured version Visualization version GIF version | ||
| Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminflelimsupuz.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminflelimsupuz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminflelimsupuz.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| liminflelimsupuz | ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminflelimsupuz.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 2 | liminflelimsupuz.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | fvexi 6854 | . . . 4 ⊢ 𝑍 ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
| 5 | 1, 4 | fexd 7183 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | liminflelimsupuz.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | 6, 2 | uzubico2 45539 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍) |
| 8 | 1 | ffnd 6671 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 Fn 𝑍) |
| 10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 11 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍) | |
| 12 | 2, 11 | uzxrd 45431 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ*) |
| 13 | pnfxr 11204 | . . . . . . . . . . . . 13 ⊢ +∞ ∈ ℝ* | |
| 14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → +∞ ∈ ℝ*) |
| 15 | 12 | xrleidd 13088 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ≤ 𝑗) |
| 16 | 2, 11 | uzred 45412 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ) |
| 17 | ltpnf 13056 | . . . . . . . . . . . . 13 ⊢ (𝑗 ∈ ℝ → 𝑗 < +∞) | |
| 18 | 16, 17 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ 𝑍 → 𝑗 < +∞) |
| 19 | 12, 14, 12, 15, 18 | elicod 13332 | . . . . . . . . . . 11 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (𝑗[,)+∞)) |
| 20 | 19 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (𝑗[,)+∞)) |
| 21 | 9, 10, 20 | fnfvimad 7190 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑗[,)+∞))) |
| 22 | 1 | ffvelcdmda 7038 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ*) |
| 23 | 21, 22 | elind 4159 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*)) |
| 24 | 23 | ne0d 4301 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 25 | 24 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 26 | 25 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ (𝑘[,)+∞)) → (𝑗 ∈ 𝑍 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 27 | 26 | reximdva 3146 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 28 | 27 | ralimdva 3145 | . . 3 ⊢ (𝜑 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)𝑗 ∈ 𝑍 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 29 | 7, 28 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 30 | 5, 29 | liminflelimsup 45747 | 1 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ∩ cin 3910 ∅c0 4292 class class class wbr 5102 “ cima 5634 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 [,)cico 13284 lim supclsp 15412 lim infclsi 45722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-ioo 13286 df-ico 13288 df-fl 13730 df-ceil 13731 df-limsup 15413 df-liminf 45723 |
| This theorem is referenced by: liminfgelimsupuz 45759 liminflimsupclim 45778 xlimliminflimsup 45833 |
| Copyright terms: Public domain | W3C validator |