Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzelz2d Structured version   Visualization version   GIF version

Theorem eluzelz2d 45424
Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
eluzelz2d.1 𝑍 = (ℤ𝑀)
eluzelz2d.2 (𝜑𝑁𝑍)
Assertion
Ref Expression
eluzelz2d (𝜑𝑁 ∈ ℤ)

Proof of Theorem eluzelz2d
StepHypRef Expression
1 eluzelz2d.2 . 2 (𝜑𝑁𝑍)
2 eluzelz2d.1 . . 3 𝑍 = (ℤ𝑀)
32eluzelz2 45414 . 2 (𝑁𝑍𝑁 ∈ ℤ)
41, 3syl 17 1 (𝜑𝑁 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6561  cz 12613  cuz 12878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-cnex 11211  ax-resscn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-neg 11495  df-z 12614  df-uz 12879
This theorem is referenced by:  uzred  45454  cvgcau  45501  limsupequzmpt2  45733  liminfequzmpt2  45806  xlimconst2  45850  iundjiunlem  46474  smflimsuplem1  46835  smflimsuplem4  46838  smflimsuplem8  46842  smfliminflem  46845
  Copyright terms: Public domain W3C validator