| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzelz2d | Structured version Visualization version GIF version | ||
| Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| eluzelz2d.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| eluzelz2d.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| eluzelz2d | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz2d.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 2 | eluzelz2d.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | 2 | eluzelz2 45414 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 ℤcz 12613 ℤ≥cuz 12878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-cnex 11211 ax-resscn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-neg 11495 df-z 12614 df-uz 12879 |
| This theorem is referenced by: uzred 45454 cvgcau 45501 limsupequzmpt2 45733 liminfequzmpt2 45806 xlimconst2 45850 iundjiunlem 46474 smflimsuplem1 46835 smflimsuplem4 46838 smflimsuplem8 46842 smfliminflem 46845 |
| Copyright terms: Public domain | W3C validator |