Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzelz2d | Structured version Visualization version GIF version |
Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
eluzelz2d.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
eluzelz2d.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
Ref | Expression |
---|---|
eluzelz2d | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz2d.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
2 | eluzelz2d.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | eluzelz2 42943 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 ℤcz 12319 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-neg 11208 df-z 12320 df-uz 12583 |
This theorem is referenced by: uzred 42983 limsupequzmpt2 43259 liminfequzmpt2 43332 xlimconst2 43376 iundjiunlem 43997 smflimsuplem1 44353 smflimsuplem4 44356 smflimsuplem8 44360 smfliminflem 44363 |
Copyright terms: Public domain | W3C validator |