Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vc0rid | Structured version Visualization version GIF version |
Description: The zero vector is a right identity element. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vczcl.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vczcl.2 | ⊢ 𝑋 = ran 𝐺 |
vczcl.3 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
vc0rid | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vczcl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | 1 | vcgrp 28833 | . 2 ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ GrpOp) |
3 | vczcl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | vczcl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 3, 4 | grporid 28780 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
6 | 2, 5 | sylan 579 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ran crn 5581 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 GrpOpcgr 28752 GIdcgi 28753 CVecOLDcvc 28821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-riota 7212 df-ov 7258 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ablo 28808 df-vc 28822 |
This theorem is referenced by: vc0 28837 |
Copyright terms: Public domain | W3C validator |