MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vclcan Structured version   Visualization version   GIF version

Theorem vclcan 30484
Description: Left cancellation law for vector addition. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vclcan.1 𝐺 = (1st𝑊)
vclcan.2 𝑋 = ran 𝐺
Assertion
Ref Expression
vclcan ((𝑊 ∈ CVecOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem vclcan
StepHypRef Expression
1 vclcan.1 . . 3 𝐺 = (1st𝑊)
21vcgrp 30483 . 2 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
3 vclcan.2 . . 3 𝑋 = ran 𝐺
43grpolcan 30443 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
52, 4sylan 580 1 ((𝑊 ∈ CVecOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  ran crn 5652  cfv 6527  (class class class)co 7399  1st c1st 7980  GrpOpcgr 30402  CVecOLDcvc 30471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-1st 7982  df-2nd 7983  df-grpo 30406  df-gid 30407  df-ginv 30408  df-ablo 30458  df-vc 30472
This theorem is referenced by:  vc0  30487
  Copyright terms: Public domain W3C validator