MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vclcan Structured version   Visualization version   GIF version

Theorem vclcan 28834
Description: Left cancellation law for vector addition. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vclcan.1 𝐺 = (1st𝑊)
vclcan.2 𝑋 = ran 𝐺
Assertion
Ref Expression
vclcan ((𝑊 ∈ CVecOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem vclcan
StepHypRef Expression
1 vclcan.1 . . 3 𝐺 = (1st𝑊)
21vcgrp 28833 . 2 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
3 vclcan.2 . . 3 𝑋 = ran 𝐺
43grpolcan 28793 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
52, 4sylan 579 1 ((𝑊 ∈ CVecOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  ran crn 5581  cfv 6418  (class class class)co 7255  1st c1st 7802  GrpOpcgr 28752  CVecOLDcvc 28821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822
This theorem is referenced by:  vc0  28837
  Copyright terms: Public domain W3C validator