MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vclcan Structured version   Visualization version   GIF version

Theorem vclcan 28140
Description: Left cancellation law for vector addition. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vclcan.1 𝐺 = (1st𝑊)
vclcan.2 𝑋 = ran 𝐺
Assertion
Ref Expression
vclcan ((𝑊 ∈ CVecOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem vclcan
StepHypRef Expression
1 vclcan.1 . . 3 𝐺 = (1st𝑊)
21vcgrp 28139 . 2 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
3 vclcan.2 . . 3 𝑋 = ran 𝐺
43grpolcan 28099 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
52, 4sylan 572 1 ((𝑊 ∈ CVecOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  ran crn 5412  cfv 6193  (class class class)co 6982  1st c1st 7505  GrpOpcgr 28058  CVecOLDcvc 28127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-id 5316  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-1st 7507  df-2nd 7508  df-grpo 28062  df-gid 28063  df-ginv 28064  df-ablo 28114  df-vc 28128
This theorem is referenced by:  vc0  28143
  Copyright terms: Public domain W3C validator