MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vczcl Structured version   Visualization version   GIF version

Theorem vczcl 29812
Description: The zero vector is a vector. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vczcl.1 𝐺 = (1st𝑊)
vczcl.2 𝑋 = ran 𝐺
vczcl.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vczcl (𝑊 ∈ CVecOLD𝑍𝑋)

Proof of Theorem vczcl
StepHypRef Expression
1 vczcl.1 . . 3 𝐺 = (1st𝑊)
21vcgrp 29810 . 2 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
3 vczcl.2 . . 3 𝑋 = ran 𝐺
4 vczcl.3 . . 3 𝑍 = (GId‘𝐺)
53, 4grpoidcl 29754 . 2 (𝐺 ∈ GrpOp → 𝑍𝑋)
62, 5syl 17 1 (𝑊 ∈ CVecOLD𝑍𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  ran crn 5676  cfv 6540  1st c1st 7969  GrpOpcgr 29729  GIdcgi 29730  CVecOLDcvc 29798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-riota 7361  df-ov 7408  df-1st 7971  df-2nd 7972  df-grpo 29733  df-gid 29734  df-ablo 29785  df-vc 29799
This theorem is referenced by:  vc0  29814  vcz  29815
  Copyright terms: Public domain W3C validator