MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vczcl Structured version   Visualization version   GIF version

Theorem vczcl 30551
Description: The zero vector is a vector. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vczcl.1 𝐺 = (1st𝑊)
vczcl.2 𝑋 = ran 𝐺
vczcl.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vczcl (𝑊 ∈ CVecOLD𝑍𝑋)

Proof of Theorem vczcl
StepHypRef Expression
1 vczcl.1 . . 3 𝐺 = (1st𝑊)
21vcgrp 30549 . 2 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
3 vczcl.2 . . 3 𝑋 = ran 𝐺
4 vczcl.3 . . 3 𝑍 = (GId‘𝐺)
53, 4grpoidcl 30493 . 2 (𝐺 ∈ GrpOp → 𝑍𝑋)
62, 5syl 17 1 (𝑊 ∈ CVecOLD𝑍𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ran crn 5632  cfv 6499  1st c1st 7945  GrpOpcgr 30468  GIdcgi 30469  CVecOLDcvc 30537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-riota 7326  df-ov 7372  df-1st 7947  df-2nd 7948  df-grpo 30472  df-gid 30473  df-ablo 30524  df-vc 30538
This theorem is referenced by:  vc0  30553  vcz  30554
  Copyright terms: Public domain W3C validator