| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vczcl | Structured version Visualization version GIF version | ||
| Description: The zero vector is a vector. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vczcl.1 | ⊢ 𝐺 = (1st ‘𝑊) |
| vczcl.2 | ⊢ 𝑋 = ran 𝐺 |
| vczcl.3 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| vczcl | ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vczcl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | 1 | vcgrp 30505 | . 2 ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ GrpOp) |
| 3 | vczcl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | vczcl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | 3, 4 | grpoidcl 30449 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ran crn 5641 ‘cfv 6513 1st c1st 7968 GrpOpcgr 30424 GIdcgi 30425 CVecOLDcvc 30493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-riota 7346 df-ov 7392 df-1st 7970 df-2nd 7971 df-grpo 30428 df-gid 30429 df-ablo 30480 df-vc 30494 |
| This theorem is referenced by: vc0 30509 vcz 30510 |
| Copyright terms: Public domain | W3C validator |