| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vczcl | Structured version Visualization version GIF version | ||
| Description: The zero vector is a vector. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vczcl.1 | ⊢ 𝐺 = (1st ‘𝑊) |
| vczcl.2 | ⊢ 𝑋 = ran 𝐺 |
| vczcl.3 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| vczcl | ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vczcl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | 1 | vcgrp 30540 | . 2 ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ GrpOp) |
| 3 | vczcl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | vczcl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | 3, 4 | grpoidcl 30484 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ran crn 5615 ‘cfv 6477 1st c1st 7914 GrpOpcgr 30459 GIdcgi 30460 CVecOLDcvc 30528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fo 6483 df-fv 6485 df-riota 7298 df-ov 7344 df-1st 7916 df-2nd 7917 df-grpo 30463 df-gid 30464 df-ablo 30515 df-vc 30529 |
| This theorem is referenced by: vc0 30544 vcz 30545 |
| Copyright terms: Public domain | W3C validator |