MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem5 Structured version   Visualization version   GIF version

Theorem hsmexlem5 10324
Description: Lemma for hsmex 10326. Combining the above constraints, along with itunitc 10315 and tcrank 9780, gives an effective constraint on the rank of 𝑆. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem5 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem5
StepHypRef Expression
1 hsmexlem4.s . . . . . . . 8 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
21ssrab3 4033 . . . . . . 7 𝑆 (𝑅1 “ On)
32sseli 3931 . . . . . 6 (𝑑𝑆𝑑 (𝑅1 “ On))
4 tcrank 9780 . . . . . 6 (𝑑 (𝑅1 “ On) → (rank‘𝑑) = (rank “ (TC‘𝑑)))
53, 4syl 17 . . . . 5 (𝑑𝑆 → (rank‘𝑑) = (rank “ (TC‘𝑑)))
6 hsmexlem4.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
76itunitc 10315 . . . . . . 7 (TC‘𝑑) = ran (𝑈𝑑)
86itunifn 10311 . . . . . . . 8 (𝑑𝑆 → (𝑈𝑑) Fn ω)
9 fniunfv 7183 . . . . . . . 8 ((𝑈𝑑) Fn ω → 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
108, 9syl 17 . . . . . . 7 (𝑑𝑆 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
117, 10eqtr4id 2783 . . . . . 6 (𝑑𝑆 → (TC‘𝑑) = 𝑐 ∈ ω ((𝑈𝑑)‘𝑐))
1211imaeq2d 6011 . . . . 5 (𝑑𝑆 → (rank “ (TC‘𝑑)) = (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)))
13 imaiun 7181 . . . . . 6 (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1413a1i 11 . . . . 5 (𝑑𝑆 → (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
155, 12, 143eqtrd 2768 . . . 4 (𝑑𝑆 → (rank‘𝑑) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
16 dmresi 6003 . . . 4 dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1715, 16eqtr4di 2782 . . 3 (𝑑𝑆 → (rank‘𝑑) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
18 rankon 9691 . . . . . 6 (rank‘𝑑) ∈ On
1915, 18eqeltrrdi 2837 . . . . 5 (𝑑𝑆 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On)
20 eloni 6317 . . . . 5 ( 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On → Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
21 oiid 9433 . . . . 5 (Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2219, 20, 213syl 18 . . . 4 (𝑑𝑆 → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2322dmeqd 5848 . . 3 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2417, 23eqtr4d 2767 . 2 (𝑑𝑆 → (rank‘𝑑) = dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
25 omex 9539 . . . 4 ω ∈ V
26 wdomref 9464 . . . 4 (ω ∈ V → ω ≼* ω)
2725, 26mp1i 13 . . 3 (𝑑𝑆 → ω ≼* ω)
28 frfnom 8357 . . . . . . 7 (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω
29 hsmexlem4.h . . . . . . . 8 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
3029fneq1i 6579 . . . . . . 7 (𝐻 Fn ω ↔ (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω)
3128, 30mpbir 231 . . . . . 6 𝐻 Fn ω
32 fniunfv 7183 . . . . . 6 (𝐻 Fn ω → 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻)
3331, 32ax-mp 5 . . . . 5 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻
34 iunon 8262 . . . . . . 7 ((ω ∈ V ∧ ∀𝑎 ∈ ω (𝐻𝑎) ∈ On) → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3525, 34mpan 690 . . . . . 6 (∀𝑎 ∈ ω (𝐻𝑎) ∈ On → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3629hsmexlem9 10319 . . . . . 6 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
3735, 36mprg 3050 . . . . 5 𝑎 ∈ ω (𝐻𝑎) ∈ On
3833, 37eqeltrri 2825 . . . 4 ran 𝐻 ∈ On
3938a1i 11 . . 3 (𝑑𝑆 ran 𝐻 ∈ On)
40 fvssunirn 6853 . . . . . 6 (𝐻𝑐) ⊆ ran 𝐻
41 hsmexlem4.x . . . . . . . 8 𝑋 ∈ V
42 eqid 2729 . . . . . . . 8 OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
4341, 29, 6, 1, 42hsmexlem4 10323 . . . . . . 7 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4443ancoms 458 . . . . . 6 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4540, 44sselid 3933 . . . . 5 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)
46 imassrn 6022 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ ran rank
47 rankf 9690 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
48 frn 6659 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
4947, 48ax-mp 5 . . . . . . 7 ran rank ⊆ On
5046, 49sstri 3945 . . . . . 6 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On
51 ffun 6655 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → Fun rank)
52 fvex 6835 . . . . . . . . 9 ((𝑈𝑑)‘𝑐) ∈ V
5352funimaex 6570 . . . . . . . 8 (Fun rank → (rank “ ((𝑈𝑑)‘𝑐)) ∈ V)
5447, 51, 53mp2b 10 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ∈ V
5554elpw 4555 . . . . . 6 ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On)
5650, 55mpbir 231 . . . . 5 (rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On
5745, 56jctil 519 . . . 4 ((𝑑𝑆𝑐 ∈ ω) → ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
5857ralrimiva 3121 . . 3 (𝑑𝑆 → ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
59 eqid 2729 . . . 4 OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
6042, 59hsmexlem3 10322 . . 3 (((ω ≼* ω ∧ ran 𝐻 ∈ On) ∧ ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)) → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6127, 39, 58, 60syl21anc 837 . 2 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6224, 61eqeltrd 2828 1 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  wss 3903  𝒫 cpw 4551  {csn 4577   cuni 4858   ciun 4941   class class class wbr 5092  cmpt 5173   I cid 5513   E cep 5518   × cxp 5617  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Ord word 6306  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  ωcom 7799  reccrdg 8331  cdom 8870  OrdIsocoi 9401  harchar 9448  * cwdom 9456  TCctc 9632  𝑅1cr1 9658  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-smo 8269  df-recs 8294  df-rdg 8332  df-en 8873  df-dom 8874  df-sdom 8875  df-oi 9402  df-har 9449  df-wdom 9457  df-tc 9633  df-r1 9660  df-rank 9661
This theorem is referenced by:  hsmexlem6  10325
  Copyright terms: Public domain W3C validator