MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem5 Structured version   Visualization version   GIF version

Theorem hsmexlem5 10195
Description: Lemma for hsmex 10197. Combining the above constraints, along with itunitc 10186 and tcrank 9651, gives an effective constraint on the rank of 𝑆. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem5 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem5
StepHypRef Expression
1 hsmexlem4.s . . . . . . . 8 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
21ssrab3 4016 . . . . . . 7 𝑆 (𝑅1 “ On)
32sseli 3918 . . . . . 6 (𝑑𝑆𝑑 (𝑅1 “ On))
4 tcrank 9651 . . . . . 6 (𝑑 (𝑅1 “ On) → (rank‘𝑑) = (rank “ (TC‘𝑑)))
53, 4syl 17 . . . . 5 (𝑑𝑆 → (rank‘𝑑) = (rank “ (TC‘𝑑)))
6 hsmexlem4.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
76itunitc 10186 . . . . . . 7 (TC‘𝑑) = ran (𝑈𝑑)
86itunifn 10182 . . . . . . . 8 (𝑑𝑆 → (𝑈𝑑) Fn ω)
9 fniunfv 7129 . . . . . . . 8 ((𝑈𝑑) Fn ω → 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
108, 9syl 17 . . . . . . 7 (𝑑𝑆 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
117, 10eqtr4id 2798 . . . . . 6 (𝑑𝑆 → (TC‘𝑑) = 𝑐 ∈ ω ((𝑈𝑑)‘𝑐))
1211imaeq2d 5972 . . . . 5 (𝑑𝑆 → (rank “ (TC‘𝑑)) = (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)))
13 imaiun 7127 . . . . . 6 (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1413a1i 11 . . . . 5 (𝑑𝑆 → (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
155, 12, 143eqtrd 2783 . . . 4 (𝑑𝑆 → (rank‘𝑑) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
16 dmresi 5964 . . . 4 dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1715, 16eqtr4di 2797 . . 3 (𝑑𝑆 → (rank‘𝑑) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
18 rankon 9562 . . . . . 6 (rank‘𝑑) ∈ On
1915, 18eqeltrrdi 2849 . . . . 5 (𝑑𝑆 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On)
20 eloni 6280 . . . . 5 ( 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On → Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
21 oiid 9309 . . . . 5 (Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2219, 20, 213syl 18 . . . 4 (𝑑𝑆 → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2322dmeqd 5817 . . 3 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2417, 23eqtr4d 2782 . 2 (𝑑𝑆 → (rank‘𝑑) = dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
25 omex 9410 . . . 4 ω ∈ V
26 wdomref 9340 . . . 4 (ω ∈ V → ω ≼* ω)
2725, 26mp1i 13 . . 3 (𝑑𝑆 → ω ≼* ω)
28 frfnom 8275 . . . . . . 7 (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω
29 hsmexlem4.h . . . . . . . 8 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
3029fneq1i 6539 . . . . . . 7 (𝐻 Fn ω ↔ (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω)
3128, 30mpbir 230 . . . . . 6 𝐻 Fn ω
32 fniunfv 7129 . . . . . 6 (𝐻 Fn ω → 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻)
3331, 32ax-mp 5 . . . . 5 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻
34 iunon 8179 . . . . . . 7 ((ω ∈ V ∧ ∀𝑎 ∈ ω (𝐻𝑎) ∈ On) → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3525, 34mpan 687 . . . . . 6 (∀𝑎 ∈ ω (𝐻𝑎) ∈ On → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3629hsmexlem9 10190 . . . . . 6 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
3735, 36mprg 3079 . . . . 5 𝑎 ∈ ω (𝐻𝑎) ∈ On
3833, 37eqeltrri 2837 . . . 4 ran 𝐻 ∈ On
3938a1i 11 . . 3 (𝑑𝑆 ran 𝐻 ∈ On)
40 fvssunirn 6812 . . . . . 6 (𝐻𝑐) ⊆ ran 𝐻
41 hsmexlem4.x . . . . . . . 8 𝑋 ∈ V
42 eqid 2739 . . . . . . . 8 OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
4341, 29, 6, 1, 42hsmexlem4 10194 . . . . . . 7 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4443ancoms 459 . . . . . 6 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4540, 44sselid 3920 . . . . 5 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)
46 imassrn 5983 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ ran rank
47 rankf 9561 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
48 frn 6616 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
4947, 48ax-mp 5 . . . . . . 7 ran rank ⊆ On
5046, 49sstri 3931 . . . . . 6 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On
51 ffun 6612 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → Fun rank)
52 fvex 6796 . . . . . . . . 9 ((𝑈𝑑)‘𝑐) ∈ V
5352funimaex 6529 . . . . . . . 8 (Fun rank → (rank “ ((𝑈𝑑)‘𝑐)) ∈ V)
5447, 51, 53mp2b 10 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ∈ V
5554elpw 4538 . . . . . 6 ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On)
5650, 55mpbir 230 . . . . 5 (rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On
5745, 56jctil 520 . . . 4 ((𝑑𝑆𝑐 ∈ ω) → ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
5857ralrimiva 3104 . . 3 (𝑑𝑆 → ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
59 eqid 2739 . . . 4 OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
6042, 59hsmexlem3 10193 . . 3 (((ω ≼* ω ∧ ran 𝐻 ∈ On) ∧ ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)) → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6127, 39, 58, 60syl21anc 835 . 2 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6224, 61eqeltrd 2840 1 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107  wral 3065  {crab 3069  Vcvv 3433  wss 3888  𝒫 cpw 4534  {csn 4562   cuni 4840   ciun 4925   class class class wbr 5075  cmpt 5158   I cid 5489   E cep 5495   × cxp 5588  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Ord word 6269  Oncon0 6270  Fun wfun 6431   Fn wfn 6432  wf 6433  cfv 6437  ωcom 7721  reccrdg 8249  cdom 8740  OrdIsocoi 9277  harchar 9324  * cwdom 9332  TCctc 9503  𝑅1cr1 9529  rankcrnk 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-smo 8186  df-recs 8211  df-rdg 8250  df-en 8743  df-dom 8744  df-sdom 8745  df-oi 9278  df-har 9325  df-wdom 9333  df-tc 9504  df-r1 9531  df-rank 9532
This theorem is referenced by:  hsmexlem6  10196
  Copyright terms: Public domain W3C validator