MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem5 Structured version   Visualization version   GIF version

Theorem hsmexlem5 10467
Description: Lemma for hsmex 10469. Combining the above constraints, along with itunitc 10458 and tcrank 9921, gives an effective constraint on the rank of 𝑆. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem5 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem5
StepHypRef Expression
1 hsmexlem4.s . . . . . . . 8 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
21ssrab3 4091 . . . . . . 7 𝑆 (𝑅1 “ On)
32sseli 3990 . . . . . 6 (𝑑𝑆𝑑 (𝑅1 “ On))
4 tcrank 9921 . . . . . 6 (𝑑 (𝑅1 “ On) → (rank‘𝑑) = (rank “ (TC‘𝑑)))
53, 4syl 17 . . . . 5 (𝑑𝑆 → (rank‘𝑑) = (rank “ (TC‘𝑑)))
6 hsmexlem4.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
76itunitc 10458 . . . . . . 7 (TC‘𝑑) = ran (𝑈𝑑)
86itunifn 10454 . . . . . . . 8 (𝑑𝑆 → (𝑈𝑑) Fn ω)
9 fniunfv 7266 . . . . . . . 8 ((𝑈𝑑) Fn ω → 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
108, 9syl 17 . . . . . . 7 (𝑑𝑆 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
117, 10eqtr4id 2793 . . . . . 6 (𝑑𝑆 → (TC‘𝑑) = 𝑐 ∈ ω ((𝑈𝑑)‘𝑐))
1211imaeq2d 6079 . . . . 5 (𝑑𝑆 → (rank “ (TC‘𝑑)) = (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)))
13 imaiun 7264 . . . . . 6 (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1413a1i 11 . . . . 5 (𝑑𝑆 → (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
155, 12, 143eqtrd 2778 . . . 4 (𝑑𝑆 → (rank‘𝑑) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
16 dmresi 6071 . . . 4 dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1715, 16eqtr4di 2792 . . 3 (𝑑𝑆 → (rank‘𝑑) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
18 rankon 9832 . . . . . 6 (rank‘𝑑) ∈ On
1915, 18eqeltrrdi 2847 . . . . 5 (𝑑𝑆 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On)
20 eloni 6395 . . . . 5 ( 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On → Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
21 oiid 9578 . . . . 5 (Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2219, 20, 213syl 18 . . . 4 (𝑑𝑆 → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2322dmeqd 5918 . . 3 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2417, 23eqtr4d 2777 . 2 (𝑑𝑆 → (rank‘𝑑) = dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
25 omex 9680 . . . 4 ω ∈ V
26 wdomref 9609 . . . 4 (ω ∈ V → ω ≼* ω)
2725, 26mp1i 13 . . 3 (𝑑𝑆 → ω ≼* ω)
28 frfnom 8473 . . . . . . 7 (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω
29 hsmexlem4.h . . . . . . . 8 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
3029fneq1i 6665 . . . . . . 7 (𝐻 Fn ω ↔ (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω)
3128, 30mpbir 231 . . . . . 6 𝐻 Fn ω
32 fniunfv 7266 . . . . . 6 (𝐻 Fn ω → 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻)
3331, 32ax-mp 5 . . . . 5 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻
34 iunon 8377 . . . . . . 7 ((ω ∈ V ∧ ∀𝑎 ∈ ω (𝐻𝑎) ∈ On) → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3525, 34mpan 690 . . . . . 6 (∀𝑎 ∈ ω (𝐻𝑎) ∈ On → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3629hsmexlem9 10462 . . . . . 6 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
3735, 36mprg 3064 . . . . 5 𝑎 ∈ ω (𝐻𝑎) ∈ On
3833, 37eqeltrri 2835 . . . 4 ran 𝐻 ∈ On
3938a1i 11 . . 3 (𝑑𝑆 ran 𝐻 ∈ On)
40 fvssunirn 6939 . . . . . 6 (𝐻𝑐) ⊆ ran 𝐻
41 hsmexlem4.x . . . . . . . 8 𝑋 ∈ V
42 eqid 2734 . . . . . . . 8 OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
4341, 29, 6, 1, 42hsmexlem4 10466 . . . . . . 7 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4443ancoms 458 . . . . . 6 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4540, 44sselid 3992 . . . . 5 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)
46 imassrn 6090 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ ran rank
47 rankf 9831 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
48 frn 6743 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
4947, 48ax-mp 5 . . . . . . 7 ran rank ⊆ On
5046, 49sstri 4004 . . . . . 6 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On
51 ffun 6739 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → Fun rank)
52 fvex 6919 . . . . . . . . 9 ((𝑈𝑑)‘𝑐) ∈ V
5352funimaex 6655 . . . . . . . 8 (Fun rank → (rank “ ((𝑈𝑑)‘𝑐)) ∈ V)
5447, 51, 53mp2b 10 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ∈ V
5554elpw 4608 . . . . . 6 ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On)
5650, 55mpbir 231 . . . . 5 (rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On
5745, 56jctil 519 . . . 4 ((𝑑𝑆𝑐 ∈ ω) → ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
5857ralrimiva 3143 . . 3 (𝑑𝑆 → ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
59 eqid 2734 . . . 4 OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
6042, 59hsmexlem3 10465 . . 3 (((ω ≼* ω ∧ ran 𝐻 ∈ On) ∧ ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)) → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6127, 39, 58, 60syl21anc 838 . 2 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6224, 61eqeltrd 2838 1 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  {crab 3432  Vcvv 3477  wss 3962  𝒫 cpw 4604  {csn 4630   cuni 4911   ciun 4995   class class class wbr 5147  cmpt 5230   I cid 5581   E cep 5587   × cxp 5686  dom cdm 5688  ran crn 5689  cres 5690  cima 5691  Ord word 6384  Oncon0 6385  Fun wfun 6556   Fn wfn 6557  wf 6558  cfv 6562  ωcom 7886  reccrdg 8447  cdom 8981  OrdIsocoi 9546  harchar 9593  * cwdom 9601  TCctc 9773  𝑅1cr1 9799  rankcrnk 9800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-smo 8384  df-recs 8409  df-rdg 8448  df-en 8984  df-dom 8985  df-sdom 8986  df-oi 9547  df-har 9594  df-wdom 9602  df-tc 9774  df-r1 9801  df-rank 9802
This theorem is referenced by:  hsmexlem6  10468
  Copyright terms: Public domain W3C validator