Proof of Theorem hsmexlem5
Step | Hyp | Ref
| Expression |
1 | | hsmexlem4.s |
. . . . . . . 8
⊢ 𝑆 = {𝑎 ∈ ∪
(𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} |
2 | 1 | ssrab3 4016 |
. . . . . . 7
⊢ 𝑆 ⊆ ∪ (𝑅1 “ On) |
3 | 2 | sseli 3918 |
. . . . . 6
⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ ∪
(𝑅1 “ On)) |
4 | | tcrank 9651 |
. . . . . 6
⊢ (𝑑 ∈ ∪ (𝑅1 “ On) →
(rank‘𝑑) = (rank
“ (TC‘𝑑))) |
5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) = (rank “ (TC‘𝑑))) |
6 | | hsmexlem4.u |
. . . . . . . 8
⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦),
𝑥) ↾
ω)) |
7 | 6 | itunitc 10186 |
. . . . . . 7
⊢
(TC‘𝑑) = ∪ ran (𝑈‘𝑑) |
8 | 6 | itunifn 10182 |
. . . . . . . 8
⊢ (𝑑 ∈ 𝑆 → (𝑈‘𝑑) Fn ω) |
9 | | fniunfv 7129 |
. . . . . . . 8
⊢ ((𝑈‘𝑑) Fn ω → ∪ 𝑐 ∈ ω ((𝑈‘𝑑)‘𝑐) = ∪ ran (𝑈‘𝑑)) |
10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝑑 ∈ 𝑆 → ∪
𝑐 ∈ ω ((𝑈‘𝑑)‘𝑐) = ∪ ran (𝑈‘𝑑)) |
11 | 7, 10 | eqtr4id 2798 |
. . . . . 6
⊢ (𝑑 ∈ 𝑆 → (TC‘𝑑) = ∪ 𝑐 ∈ ω ((𝑈‘𝑑)‘𝑐)) |
12 | 11 | imaeq2d 5972 |
. . . . 5
⊢ (𝑑 ∈ 𝑆 → (rank “ (TC‘𝑑)) = (rank “ ∪ 𝑐 ∈ ω ((𝑈‘𝑑)‘𝑐))) |
13 | | imaiun 7127 |
. . . . . 6
⊢ (rank
“ ∪ 𝑐 ∈ ω ((𝑈‘𝑑)‘𝑐)) = ∪
𝑐 ∈ ω (rank
“ ((𝑈‘𝑑)‘𝑐)) |
14 | 13 | a1i 11 |
. . . . 5
⊢ (𝑑 ∈ 𝑆 → (rank “ ∪ 𝑐 ∈ ω ((𝑈‘𝑑)‘𝑐)) = ∪
𝑐 ∈ ω (rank
“ ((𝑈‘𝑑)‘𝑐))) |
15 | 5, 12, 14 | 3eqtrd 2783 |
. . . 4
⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) = ∪ 𝑐 ∈ ω (rank “
((𝑈‘𝑑)‘𝑐))) |
16 | | dmresi 5964 |
. . . 4
⊢ dom ( I
↾ ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) = ∪
𝑐 ∈ ω (rank
“ ((𝑈‘𝑑)‘𝑐)) |
17 | 15, 16 | eqtr4di 2797 |
. . 3
⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) = dom ( I ↾ ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐)))) |
18 | | rankon 9562 |
. . . . . 6
⊢
(rank‘𝑑)
∈ On |
19 | 15, 18 | eqeltrrdi 2849 |
. . . . 5
⊢ (𝑑 ∈ 𝑆 → ∪
𝑐 ∈ ω (rank
“ ((𝑈‘𝑑)‘𝑐)) ∈ On) |
20 | | eloni 6280 |
. . . . 5
⊢ (∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐)) ∈ On → Ord ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) |
21 | | oiid 9309 |
. . . . 5
⊢ (Ord
∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐)) → OrdIso( E , ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) = ( I ↾ ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐)))) |
22 | 19, 20, 21 | 3syl 18 |
. . . 4
⊢ (𝑑 ∈ 𝑆 → OrdIso( E , ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) = ( I ↾ ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐)))) |
23 | 22 | dmeqd 5817 |
. . 3
⊢ (𝑑 ∈ 𝑆 → dom OrdIso( E , ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) = dom ( I ↾ ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐)))) |
24 | 17, 23 | eqtr4d 2782 |
. 2
⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) = dom OrdIso( E , ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐)))) |
25 | | omex 9410 |
. . . 4
⊢ ω
∈ V |
26 | | wdomref 9340 |
. . . 4
⊢ (ω
∈ V → ω ≼* ω) |
27 | 25, 26 | mp1i 13 |
. . 3
⊢ (𝑑 ∈ 𝑆 → ω ≼*
ω) |
28 | | frfnom 8275 |
. . . . . . 7
⊢
(rec((𝑧 ∈ V
↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn
ω |
29 | | hsmexlem4.h |
. . . . . . . 8
⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
30 | 29 | fneq1i 6539 |
. . . . . . 7
⊢ (𝐻 Fn ω ↔ (rec((𝑧 ∈ V ↦
(har‘𝒫 (𝑋
× 𝑧))),
(har‘𝒫 𝑋))
↾ ω) Fn ω) |
31 | 28, 30 | mpbir 230 |
. . . . . 6
⊢ 𝐻 Fn ω |
32 | | fniunfv 7129 |
. . . . . 6
⊢ (𝐻 Fn ω → ∪ 𝑎 ∈ ω (𝐻‘𝑎) = ∪ ran 𝐻) |
33 | 31, 32 | ax-mp 5 |
. . . . 5
⊢ ∪ 𝑎 ∈ ω (𝐻‘𝑎) = ∪ ran 𝐻 |
34 | | iunon 8179 |
. . . . . . 7
⊢ ((ω
∈ V ∧ ∀𝑎
∈ ω (𝐻‘𝑎) ∈ On) → ∪ 𝑎 ∈ ω (𝐻‘𝑎) ∈ On) |
35 | 25, 34 | mpan 687 |
. . . . . 6
⊢
(∀𝑎 ∈
ω (𝐻‘𝑎) ∈ On → ∪ 𝑎 ∈ ω (𝐻‘𝑎) ∈ On) |
36 | 29 | hsmexlem9 10190 |
. . . . . 6
⊢ (𝑎 ∈ ω → (𝐻‘𝑎) ∈ On) |
37 | 35, 36 | mprg 3079 |
. . . . 5
⊢ ∪ 𝑎 ∈ ω (𝐻‘𝑎) ∈ On |
38 | 33, 37 | eqeltrri 2837 |
. . . 4
⊢ ∪ ran 𝐻 ∈ On |
39 | 38 | a1i 11 |
. . 3
⊢ (𝑑 ∈ 𝑆 → ∪ ran
𝐻 ∈
On) |
40 | | fvssunirn 6812 |
. . . . . 6
⊢ (𝐻‘𝑐) ⊆ ∪ ran
𝐻 |
41 | | hsmexlem4.x |
. . . . . . . 8
⊢ 𝑋 ∈ V |
42 | | eqid 2739 |
. . . . . . . 8
⊢ OrdIso( E
, (rank “ ((𝑈‘𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) |
43 | 41, 29, 6, 1, 42 | hsmexlem4 10194 |
. . . . . . 7
⊢ ((𝑐 ∈ ω ∧ 𝑑 ∈ 𝑆) → dom OrdIso( E , (rank “
((𝑈‘𝑑)‘𝑐))) ∈ (𝐻‘𝑐)) |
44 | 43 | ancoms 459 |
. . . . . 6
⊢ ((𝑑 ∈ 𝑆 ∧ 𝑐 ∈ ω) → dom OrdIso( E , (rank
“ ((𝑈‘𝑑)‘𝑐))) ∈ (𝐻‘𝑐)) |
45 | 40, 44 | sselid 3920 |
. . . . 5
⊢ ((𝑑 ∈ 𝑆 ∧ 𝑐 ∈ ω) → dom OrdIso( E , (rank
“ ((𝑈‘𝑑)‘𝑐))) ∈ ∪ ran
𝐻) |
46 | | imassrn 5983 |
. . . . . . 7
⊢ (rank
“ ((𝑈‘𝑑)‘𝑐)) ⊆ ran rank |
47 | | rankf 9561 |
. . . . . . . 8
⊢
rank:∪ (𝑅1 “
On)⟶On |
48 | | frn 6616 |
. . . . . . . 8
⊢
(rank:∪ (𝑅1 “
On)⟶On → ran rank ⊆ On) |
49 | 47, 48 | ax-mp 5 |
. . . . . . 7
⊢ ran rank
⊆ On |
50 | 46, 49 | sstri 3931 |
. . . . . 6
⊢ (rank
“ ((𝑈‘𝑑)‘𝑐)) ⊆ On |
51 | | ffun 6612 |
. . . . . . . 8
⊢
(rank:∪ (𝑅1 “
On)⟶On → Fun rank) |
52 | | fvex 6796 |
. . . . . . . . 9
⊢ ((𝑈‘𝑑)‘𝑐) ∈ V |
53 | 52 | funimaex 6529 |
. . . . . . . 8
⊢ (Fun rank
→ (rank “ ((𝑈‘𝑑)‘𝑐)) ∈ V) |
54 | 47, 51, 53 | mp2b 10 |
. . . . . . 7
⊢ (rank
“ ((𝑈‘𝑑)‘𝑐)) ∈ V |
55 | 54 | elpw 4538 |
. . . . . 6
⊢ ((rank
“ ((𝑈‘𝑑)‘𝑐)) ∈ 𝒫 On ↔ (rank “
((𝑈‘𝑑)‘𝑐)) ⊆ On) |
56 | 50, 55 | mpbir 230 |
. . . . 5
⊢ (rank
“ ((𝑈‘𝑑)‘𝑐)) ∈ 𝒫 On |
57 | 45, 56 | jctil 520 |
. . . 4
⊢ ((𝑑 ∈ 𝑆 ∧ 𝑐 ∈ ω) → ((rank “
((𝑈‘𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E ,
(rank “ ((𝑈‘𝑑)‘𝑐))) ∈ ∪ ran
𝐻)) |
58 | 57 | ralrimiva 3104 |
. . 3
⊢ (𝑑 ∈ 𝑆 → ∀𝑐 ∈ ω ((rank “ ((𝑈‘𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E ,
(rank “ ((𝑈‘𝑑)‘𝑐))) ∈ ∪ ran
𝐻)) |
59 | | eqid 2739 |
. . . 4
⊢ OrdIso( E
, ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) = OrdIso( E , ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) |
60 | 42, 59 | hsmexlem3 10193 |
. . 3
⊢
(((ω ≼* ω ∧ ∪ ran 𝐻 ∈ On) ∧ ∀𝑐 ∈ ω ((rank “ ((𝑈‘𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E ,
(rank “ ((𝑈‘𝑑)‘𝑐))) ∈ ∪ ran
𝐻)) → dom OrdIso( E ,
∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) ∈ (har‘𝒫 (ω
× ∪ ran 𝐻))) |
61 | 27, 39, 58, 60 | syl21anc 835 |
. 2
⊢ (𝑑 ∈ 𝑆 → dom OrdIso( E , ∪ 𝑐 ∈ ω (rank “ ((𝑈‘𝑑)‘𝑐))) ∈ (har‘𝒫 (ω
× ∪ ran 𝐻))) |
62 | 24, 61 | eqeltrd 2840 |
1
⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω
× ∪ ran 𝐻))) |