MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem5 Structured version   Visualization version   GIF version

Theorem hsmexlem5 10442
Description: Lemma for hsmex 10444. Combining the above constraints, along with itunitc 10433 and tcrank 9896, gives an effective constraint on the rank of 𝑆. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem5 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem5
StepHypRef Expression
1 hsmexlem4.s . . . . . . . 8 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
21ssrab3 4057 . . . . . . 7 𝑆 (𝑅1 “ On)
32sseli 3954 . . . . . 6 (𝑑𝑆𝑑 (𝑅1 “ On))
4 tcrank 9896 . . . . . 6 (𝑑 (𝑅1 “ On) → (rank‘𝑑) = (rank “ (TC‘𝑑)))
53, 4syl 17 . . . . 5 (𝑑𝑆 → (rank‘𝑑) = (rank “ (TC‘𝑑)))
6 hsmexlem4.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
76itunitc 10433 . . . . . . 7 (TC‘𝑑) = ran (𝑈𝑑)
86itunifn 10429 . . . . . . . 8 (𝑑𝑆 → (𝑈𝑑) Fn ω)
9 fniunfv 7238 . . . . . . . 8 ((𝑈𝑑) Fn ω → 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
108, 9syl 17 . . . . . . 7 (𝑑𝑆 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
117, 10eqtr4id 2789 . . . . . 6 (𝑑𝑆 → (TC‘𝑑) = 𝑐 ∈ ω ((𝑈𝑑)‘𝑐))
1211imaeq2d 6047 . . . . 5 (𝑑𝑆 → (rank “ (TC‘𝑑)) = (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)))
13 imaiun 7236 . . . . . 6 (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1413a1i 11 . . . . 5 (𝑑𝑆 → (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
155, 12, 143eqtrd 2774 . . . 4 (𝑑𝑆 → (rank‘𝑑) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
16 dmresi 6039 . . . 4 dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1715, 16eqtr4di 2788 . . 3 (𝑑𝑆 → (rank‘𝑑) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
18 rankon 9807 . . . . . 6 (rank‘𝑑) ∈ On
1915, 18eqeltrrdi 2843 . . . . 5 (𝑑𝑆 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On)
20 eloni 6362 . . . . 5 ( 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On → Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
21 oiid 9553 . . . . 5 (Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2219, 20, 213syl 18 . . . 4 (𝑑𝑆 → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2322dmeqd 5885 . . 3 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2417, 23eqtr4d 2773 . 2 (𝑑𝑆 → (rank‘𝑑) = dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
25 omex 9655 . . . 4 ω ∈ V
26 wdomref 9584 . . . 4 (ω ∈ V → ω ≼* ω)
2725, 26mp1i 13 . . 3 (𝑑𝑆 → ω ≼* ω)
28 frfnom 8447 . . . . . . 7 (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω
29 hsmexlem4.h . . . . . . . 8 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
3029fneq1i 6634 . . . . . . 7 (𝐻 Fn ω ↔ (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω)
3128, 30mpbir 231 . . . . . 6 𝐻 Fn ω
32 fniunfv 7238 . . . . . 6 (𝐻 Fn ω → 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻)
3331, 32ax-mp 5 . . . . 5 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻
34 iunon 8351 . . . . . . 7 ((ω ∈ V ∧ ∀𝑎 ∈ ω (𝐻𝑎) ∈ On) → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3525, 34mpan 690 . . . . . 6 (∀𝑎 ∈ ω (𝐻𝑎) ∈ On → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3629hsmexlem9 10437 . . . . . 6 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
3735, 36mprg 3057 . . . . 5 𝑎 ∈ ω (𝐻𝑎) ∈ On
3833, 37eqeltrri 2831 . . . 4 ran 𝐻 ∈ On
3938a1i 11 . . 3 (𝑑𝑆 ran 𝐻 ∈ On)
40 fvssunirn 6908 . . . . . 6 (𝐻𝑐) ⊆ ran 𝐻
41 hsmexlem4.x . . . . . . . 8 𝑋 ∈ V
42 eqid 2735 . . . . . . . 8 OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
4341, 29, 6, 1, 42hsmexlem4 10441 . . . . . . 7 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4443ancoms 458 . . . . . 6 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4540, 44sselid 3956 . . . . 5 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)
46 imassrn 6058 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ ran rank
47 rankf 9806 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
48 frn 6712 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
4947, 48ax-mp 5 . . . . . . 7 ran rank ⊆ On
5046, 49sstri 3968 . . . . . 6 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On
51 ffun 6708 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → Fun rank)
52 fvex 6888 . . . . . . . . 9 ((𝑈𝑑)‘𝑐) ∈ V
5352funimaex 6624 . . . . . . . 8 (Fun rank → (rank “ ((𝑈𝑑)‘𝑐)) ∈ V)
5447, 51, 53mp2b 10 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ∈ V
5554elpw 4579 . . . . . 6 ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On)
5650, 55mpbir 231 . . . . 5 (rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On
5745, 56jctil 519 . . . 4 ((𝑑𝑆𝑐 ∈ ω) → ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
5857ralrimiva 3132 . . 3 (𝑑𝑆 → ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
59 eqid 2735 . . . 4 OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
6042, 59hsmexlem3 10440 . . 3 (((ω ≼* ω ∧ ran 𝐻 ∈ On) ∧ ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)) → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6127, 39, 58, 60syl21anc 837 . 2 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6224, 61eqeltrd 2834 1 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575  {csn 4601   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201   I cid 5547   E cep 5552   × cxp 5652  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Ord word 6351  Oncon0 6352  Fun wfun 6524   Fn wfn 6525  wf 6526  cfv 6530  ωcom 7859  reccrdg 8421  cdom 8955  OrdIsocoi 9521  harchar 9568  * cwdom 9576  TCctc 9748  𝑅1cr1 9774  rankcrnk 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-smo 8358  df-recs 8383  df-rdg 8422  df-en 8958  df-dom 8959  df-sdom 8960  df-oi 9522  df-har 9569  df-wdom 9577  df-tc 9749  df-r1 9776  df-rank 9777
This theorem is referenced by:  hsmexlem6  10443
  Copyright terms: Public domain W3C validator