MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfcl Structured version   Visualization version   GIF version

Theorem cantnfcl 9132
Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
Assertion
Ref Expression
cantnfcl (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))

Proof of Theorem cantnfcl
StepHypRef Expression
1 suppssdm 7845 . . . . 5 (𝐹 supp ∅) ⊆ dom 𝐹
2 cantnfcl.f . . . . . . 7 (𝜑𝐹𝑆)
3 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
4 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
5 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
63, 4, 5cantnfs 9131 . . . . . . 7 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
72, 6mpbid 234 . . . . . 6 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
87simpld 497 . . . . 5 (𝜑𝐹:𝐵𝐴)
91, 8fssdm 6532 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
10 onss 7507 . . . . 5 (𝐵 ∈ On → 𝐵 ⊆ On)
115, 10syl 17 . . . 4 (𝜑𝐵 ⊆ On)
129, 11sstrd 3979 . . 3 (𝜑 → (𝐹 supp ∅) ⊆ On)
13 epweon 7499 . . 3 E We On
14 wess 5544 . . 3 ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅)))
1512, 13, 14mpisyl 21 . 2 (𝜑 → E We (𝐹 supp ∅))
16 ovexd 7193 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ V)
17 cantnfcl.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
1817oion 9002 . . . . 5 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1916, 18syl 17 . . . 4 (𝜑 → dom 𝐺 ∈ On)
207simprd 498 . . . . . 6 (𝜑𝐹 finSupp ∅)
2120fsuppimpd 8842 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ Fin)
2217oien 9004 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
2316, 15, 22syl2anc 586 . . . . 5 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
24 enfii 8737 . . . . 5 (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin)
2521, 23, 24syl2anc 586 . . . 4 (𝜑 → dom 𝐺 ∈ Fin)
2619, 25elind 4173 . . 3 (𝜑 → dom 𝐺 ∈ (On ∩ Fin))
27 onfin2 8712 . . 3 ω = (On ∩ Fin)
2826, 27eleqtrrdi 2926 . 2 (𝜑 → dom 𝐺 ∈ ω)
2915, 28jca 514 1 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  wss 3938  c0 4293   class class class wbr 5068   E cep 5466   We wwe 5515  dom cdm 5557  Oncon0 6193  wf 6353  (class class class)co 7158  ωcom 7582   supp csupp 7832  cen 8508  Fincfn 8511   finSupp cfsupp 8835  OrdIsocoi 8975   CNF ccnf 9126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seqom 8086  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-cnf 9127
This theorem is referenced by:  cantnfval2  9134  cantnfle  9136  cantnflt  9137  cantnflt2  9138  cantnff  9139  cantnfp1lem2  9144  cantnfp1lem3  9145  cantnflem1b  9151  cantnflem1d  9153  cantnflem1  9154  cnfcomlem  9164  cnfcom  9165  cnfcom2lem  9166  cnfcom3lem  9168
  Copyright terms: Public domain W3C validator