MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfcl Structured version   Visualization version   GIF version

Theorem cantnfcl 9355
Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
Assertion
Ref Expression
cantnfcl (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))

Proof of Theorem cantnfcl
StepHypRef Expression
1 suppssdm 7964 . . . . 5 (𝐹 supp ∅) ⊆ dom 𝐹
2 cantnfcl.f . . . . . . 7 (𝜑𝐹𝑆)
3 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
4 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
5 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
63, 4, 5cantnfs 9354 . . . . . . 7 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
72, 6mpbid 231 . . . . . 6 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
87simpld 494 . . . . 5 (𝜑𝐹:𝐵𝐴)
91, 8fssdm 6604 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
10 onss 7611 . . . . 5 (𝐵 ∈ On → 𝐵 ⊆ On)
115, 10syl 17 . . . 4 (𝜑𝐵 ⊆ On)
129, 11sstrd 3927 . . 3 (𝜑 → (𝐹 supp ∅) ⊆ On)
13 epweon 7603 . . 3 E We On
14 wess 5567 . . 3 ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅)))
1512, 13, 14mpisyl 21 . 2 (𝜑 → E We (𝐹 supp ∅))
16 ovexd 7290 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ V)
17 cantnfcl.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
1817oion 9225 . . . . 5 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1916, 18syl 17 . . . 4 (𝜑 → dom 𝐺 ∈ On)
207simprd 495 . . . . . 6 (𝜑𝐹 finSupp ∅)
2120fsuppimpd 9065 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ Fin)
2217oien 9227 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
2316, 15, 22syl2anc 583 . . . . 5 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
24 enfii 8932 . . . . 5 (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin)
2521, 23, 24syl2anc 583 . . . 4 (𝜑 → dom 𝐺 ∈ Fin)
2619, 25elind 4124 . . 3 (𝜑 → dom 𝐺 ∈ (On ∩ Fin))
27 onfin2 8945 . . 3 ω = (On ∩ Fin)
2826, 27eleqtrrdi 2850 . 2 (𝜑 → dom 𝐺 ∈ ω)
2915, 28jca 511 1 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  c0 4253   class class class wbr 5070   E cep 5485   We wwe 5534  dom cdm 5580  Oncon0 6251  wf 6414  (class class class)co 7255  ωcom 7687   supp csupp 7948  cen 8688  Fincfn 8691   finSupp cfsupp 9058  OrdIsocoi 9198   CNF ccnf 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-cnf 9350
This theorem is referenced by:  cantnfval2  9357  cantnfle  9359  cantnflt  9360  cantnflt2  9361  cantnff  9362  cantnfp1lem2  9367  cantnfp1lem3  9368  cantnflem1b  9374  cantnflem1d  9376  cantnflem1  9377  cnfcomlem  9387  cnfcom  9388  cnfcom2lem  9389  cnfcom3lem  9391
  Copyright terms: Public domain W3C validator