| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfcl | Structured version Visualization version GIF version | ||
| Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| cantnfcl | ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssdm 8176 | . . . . 5 ⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | |
| 2 | cantnfcl.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 3 | cantnfs.s | . . . . . . . 8 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 4 | cantnfs.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 5 | cantnfs.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 6 | 3, 4, 5 | cantnfs 9680 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| 7 | 2, 6 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
| 9 | 1, 8 | fssdm 6725 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
| 10 | onss 7779 | . . . . 5 ⊢ (𝐵 ∈ On → 𝐵 ⊆ On) | |
| 11 | 5, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ On) |
| 12 | 9, 11 | sstrd 3969 | . . 3 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
| 13 | epweon 7769 | . . 3 ⊢ E We On | |
| 14 | wess 5640 | . . 3 ⊢ ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅))) | |
| 15 | 12, 13, 14 | mpisyl 21 | . 2 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
| 16 | ovexd 7440 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
| 17 | cantnfcl.g | . . . . . 6 ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | |
| 18 | 17 | oion 9550 | . . . . 5 ⊢ ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On) |
| 19 | 16, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ On) |
| 20 | 7 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp ∅) |
| 21 | 20 | fsuppimpd 9381 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
| 22 | 17 | oien 9552 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅)) |
| 23 | 16, 15, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅)) |
| 24 | enfii 9200 | . . . . 5 ⊢ (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin) | |
| 25 | 21, 23, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ Fin) |
| 26 | 19, 25 | elind 4175 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ (On ∩ Fin)) |
| 27 | onfin2 9240 | . . 3 ⊢ ω = (On ∩ Fin) | |
| 28 | 26, 27 | eleqtrrdi 2845 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ ω) |
| 29 | 15, 28 | jca 511 | 1 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 E cep 5552 We wwe 5605 dom cdm 5654 Oncon0 6352 ⟶wf 6527 (class class class)co 7405 ωcom 7861 supp csupp 8159 ≈ cen 8956 Fincfn 8959 finSupp cfsupp 9373 OrdIsocoi 9523 CNF ccnf 9675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seqom 8462 df-1o 8480 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-cnf 9676 |
| This theorem is referenced by: cantnfval2 9683 cantnfle 9685 cantnflt 9686 cantnflt2 9687 cantnff 9688 cantnfp1lem2 9693 cantnfp1lem3 9694 cantnflem1b 9700 cantnflem1d 9702 cantnflem1 9703 cnfcomlem 9713 cnfcom 9714 cnfcom2lem 9715 cnfcom3lem 9717 |
| Copyright terms: Public domain | W3C validator |