| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfcl | Structured version Visualization version GIF version | ||
| Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| cantnfcl | ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssdm 8156 | . . . . 5 ⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | |
| 2 | cantnfcl.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 3 | cantnfs.s | . . . . . . . 8 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 4 | cantnfs.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 5 | cantnfs.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 6 | 3, 4, 5 | cantnfs 9619 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| 7 | 2, 6 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
| 9 | 1, 8 | fssdm 6707 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
| 10 | onss 7761 | . . . . 5 ⊢ (𝐵 ∈ On → 𝐵 ⊆ On) | |
| 11 | 5, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ On) |
| 12 | 9, 11 | sstrd 3957 | . . 3 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
| 13 | epweon 7751 | . . 3 ⊢ E We On | |
| 14 | wess 5624 | . . 3 ⊢ ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅))) | |
| 15 | 12, 13, 14 | mpisyl 21 | . 2 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
| 16 | ovexd 7422 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
| 17 | cantnfcl.g | . . . . . 6 ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | |
| 18 | 17 | oion 9489 | . . . . 5 ⊢ ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On) |
| 19 | 16, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ On) |
| 20 | 7 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp ∅) |
| 21 | 20 | fsuppimpd 9320 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
| 22 | 17 | oien 9491 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅)) |
| 23 | 16, 15, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅)) |
| 24 | enfii 9150 | . . . . 5 ⊢ (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin) | |
| 25 | 21, 23, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ Fin) |
| 26 | 19, 25 | elind 4163 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ (On ∩ Fin)) |
| 27 | onfin2 9180 | . . 3 ⊢ ω = (On ∩ Fin) | |
| 28 | 26, 27 | eleqtrrdi 2839 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ ω) |
| 29 | 15, 28 | jca 511 | 1 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 E cep 5537 We wwe 5590 dom cdm 5638 Oncon0 6332 ⟶wf 6507 (class class class)co 7387 ωcom 7842 supp csupp 8139 ≈ cen 8915 Fincfn 8918 finSupp cfsupp 9312 OrdIsocoi 9462 CNF ccnf 9614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seqom 8416 df-1o 8434 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-cnf 9615 |
| This theorem is referenced by: cantnfval2 9622 cantnfle 9624 cantnflt 9625 cantnflt2 9626 cantnff 9627 cantnfp1lem2 9632 cantnfp1lem3 9633 cantnflem1b 9639 cantnflem1d 9641 cantnflem1 9642 cnfcomlem 9652 cnfcom 9653 cnfcom2lem 9654 cnfcom3lem 9656 |
| Copyright terms: Public domain | W3C validator |