![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnfcl | Structured version Visualization version GIF version |
Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Ref | Expression |
---|---|
cantnfcl | ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssdm 7648 | . . . . 5 ⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | |
2 | cantnfcl.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
3 | cantnfs.s | . . . . . . . 8 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
4 | cantnfs.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ On) | |
5 | cantnfs.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ On) | |
6 | 3, 4, 5 | cantnfs 8925 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
7 | 2, 6 | mpbid 224 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
8 | 7 | simpld 487 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
9 | 1, 8 | fssdm 6362 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
10 | onss 7323 | . . . . 5 ⊢ (𝐵 ∈ On → 𝐵 ⊆ On) | |
11 | 5, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ On) |
12 | 9, 11 | sstrd 3870 | . . 3 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
13 | epweon 7315 | . . 3 ⊢ E We On | |
14 | wess 5395 | . . 3 ⊢ ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅))) | |
15 | 12, 13, 14 | mpisyl 21 | . 2 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
16 | ovexd 7012 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
17 | cantnfcl.g | . . . . . 6 ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | |
18 | 17 | oion 8797 | . . . . 5 ⊢ ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On) |
19 | 16, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ On) |
20 | 7 | simprd 488 | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp ∅) |
21 | 20 | fsuppimpd 8637 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
22 | 17 | oien 8799 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅)) |
23 | 16, 15, 22 | syl2anc 576 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅)) |
24 | enfii 8532 | . . . . 5 ⊢ (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin) | |
25 | 21, 23, 24 | syl2anc 576 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ Fin) |
26 | 19, 25 | elind 4061 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ (On ∩ Fin)) |
27 | onfin2 8507 | . . 3 ⊢ ω = (On ∩ Fin) | |
28 | 26, 27 | syl6eleqr 2877 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ ω) |
29 | 15, 28 | jca 504 | 1 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3415 ∩ cin 3830 ⊆ wss 3831 ∅c0 4180 class class class wbr 4930 E cep 5317 We wwe 5366 dom cdm 5408 Oncon0 6031 ⟶wf 6186 (class class class)co 6978 ωcom 7398 supp csupp 7635 ≈ cen 8305 Fincfn 8308 finSupp cfsupp 8630 OrdIsocoi 8770 CNF ccnf 8920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-se 5368 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-isom 6199 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-supp 7636 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-seqom 7889 df-er 8091 df-map 8210 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-fsupp 8631 df-oi 8771 df-cnf 8921 |
This theorem is referenced by: cantnfval2 8928 cantnfle 8930 cantnflt 8931 cantnflt2 8932 cantnff 8933 cantnfp1lem2 8938 cantnfp1lem3 8939 cantnflem1b 8945 cantnflem1d 8947 cantnflem1 8948 cnfcomlem 8958 cnfcom 8959 cnfcom2lem 8960 cnfcom3lem 8962 |
Copyright terms: Public domain | W3C validator |