Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfcl Structured version   Visualization version   GIF version

Theorem cantnfcl 9118
 Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
Assertion
Ref Expression
cantnfcl (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))

Proof of Theorem cantnfcl
StepHypRef Expression
1 suppssdm 7830 . . . . 5 (𝐹 supp ∅) ⊆ dom 𝐹
2 cantnfcl.f . . . . . . 7 (𝜑𝐹𝑆)
3 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
4 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
5 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
63, 4, 5cantnfs 9117 . . . . . . 7 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
72, 6mpbid 235 . . . . . 6 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
87simpld 498 . . . . 5 (𝜑𝐹:𝐵𝐴)
91, 8fssdm 6508 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
10 onss 7489 . . . . 5 (𝐵 ∈ On → 𝐵 ⊆ On)
115, 10syl 17 . . . 4 (𝜑𝐵 ⊆ On)
129, 11sstrd 3928 . . 3 (𝜑 → (𝐹 supp ∅) ⊆ On)
13 epweon 7481 . . 3 E We On
14 wess 5510 . . 3 ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅)))
1512, 13, 14mpisyl 21 . 2 (𝜑 → E We (𝐹 supp ∅))
16 ovexd 7174 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ V)
17 cantnfcl.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
1817oion 8988 . . . . 5 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1916, 18syl 17 . . . 4 (𝜑 → dom 𝐺 ∈ On)
207simprd 499 . . . . . 6 (𝜑𝐹 finSupp ∅)
2120fsuppimpd 8828 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ Fin)
2217oien 8990 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
2316, 15, 22syl2anc 587 . . . . 5 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
24 enfii 8723 . . . . 5 (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin)
2521, 23, 24syl2anc 587 . . . 4 (𝜑 → dom 𝐺 ∈ Fin)
2619, 25elind 4124 . . 3 (𝜑 → dom 𝐺 ∈ (On ∩ Fin))
27 onfin2 8699 . . 3 ω = (On ∩ Fin)
2826, 27eleqtrrdi 2904 . 2 (𝜑 → dom 𝐺 ∈ ω)
2915, 28jca 515 1 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  Vcvv 3444   ∩ cin 3883   ⊆ wss 3884  ∅c0 4246   class class class wbr 5033   E cep 5432   We wwe 5481  dom cdm 5523  Oncon0 6163  ⟶wf 6324  (class class class)co 7139  ωcom 7564   supp csupp 7817   ≈ cen 8493  Fincfn 8496   finSupp cfsupp 8821  OrdIsocoi 8961   CNF ccnf 9112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-seqom 8071  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-cnf 9113 This theorem is referenced by:  cantnfval2  9120  cantnfle  9122  cantnflt  9123  cantnflt2  9124  cantnff  9125  cantnfp1lem2  9130  cantnfp1lem3  9131  cantnflem1b  9137  cantnflem1d  9139  cantnflem1  9140  cnfcomlem  9150  cnfcom  9151  cnfcom2lem  9152  cnfcom3lem  9154
 Copyright terms: Public domain W3C validator