MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfcl Structured version   Visualization version   GIF version

Theorem cantnfcl 9627
Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
Assertion
Ref Expression
cantnfcl (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))

Proof of Theorem cantnfcl
StepHypRef Expression
1 suppssdm 8159 . . . . 5 (𝐹 supp ∅) ⊆ dom 𝐹
2 cantnfcl.f . . . . . . 7 (𝜑𝐹𝑆)
3 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
4 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
5 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
63, 4, 5cantnfs 9626 . . . . . . 7 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
72, 6mpbid 232 . . . . . 6 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
87simpld 494 . . . . 5 (𝜑𝐹:𝐵𝐴)
91, 8fssdm 6710 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
10 onss 7764 . . . . 5 (𝐵 ∈ On → 𝐵 ⊆ On)
115, 10syl 17 . . . 4 (𝜑𝐵 ⊆ On)
129, 11sstrd 3960 . . 3 (𝜑 → (𝐹 supp ∅) ⊆ On)
13 epweon 7754 . . 3 E We On
14 wess 5627 . . 3 ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅)))
1512, 13, 14mpisyl 21 . 2 (𝜑 → E We (𝐹 supp ∅))
16 ovexd 7425 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ V)
17 cantnfcl.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
1817oion 9496 . . . . 5 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1916, 18syl 17 . . . 4 (𝜑 → dom 𝐺 ∈ On)
207simprd 495 . . . . . 6 (𝜑𝐹 finSupp ∅)
2120fsuppimpd 9327 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ Fin)
2217oien 9498 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
2316, 15, 22syl2anc 584 . . . . 5 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
24 enfii 9156 . . . . 5 (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin)
2521, 23, 24syl2anc 584 . . . 4 (𝜑 → dom 𝐺 ∈ Fin)
2619, 25elind 4166 . . 3 (𝜑 → dom 𝐺 ∈ (On ∩ Fin))
27 onfin2 9186 . . 3 ω = (On ∩ Fin)
2826, 27eleqtrrdi 2840 . 2 (𝜑 → dom 𝐺 ∈ ω)
2915, 28jca 511 1 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  wss 3917  c0 4299   class class class wbr 5110   E cep 5540   We wwe 5593  dom cdm 5641  Oncon0 6335  wf 6510  (class class class)co 7390  ωcom 7845   supp csupp 8142  cen 8918  Fincfn 8921   finSupp cfsupp 9319  OrdIsocoi 9469   CNF ccnf 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-cnf 9622
This theorem is referenced by:  cantnfval2  9629  cantnfle  9631  cantnflt  9632  cantnflt2  9633  cantnff  9634  cantnfp1lem2  9639  cantnfp1lem3  9640  cantnflem1b  9646  cantnflem1d  9648  cantnflem1  9649  cnfcomlem  9659  cnfcom  9660  cnfcom2lem  9661  cnfcom3lem  9663
  Copyright terms: Public domain W3C validator