| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfcl | Structured version Visualization version GIF version | ||
| Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| cantnfcl | ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssdm 8133 | . . . . 5 ⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | |
| 2 | cantnfcl.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 3 | cantnfs.s | . . . . . . . 8 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 4 | cantnfs.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 5 | cantnfs.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 6 | 3, 4, 5 | cantnfs 9595 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| 7 | 2, 6 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
| 9 | 1, 8 | fssdm 6689 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
| 10 | onss 7741 | . . . . 5 ⊢ (𝐵 ∈ On → 𝐵 ⊆ On) | |
| 11 | 5, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ On) |
| 12 | 9, 11 | sstrd 3954 | . . 3 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
| 13 | epweon 7731 | . . 3 ⊢ E We On | |
| 14 | wess 5617 | . . 3 ⊢ ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅))) | |
| 15 | 12, 13, 14 | mpisyl 21 | . 2 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
| 16 | ovexd 7404 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
| 17 | cantnfcl.g | . . . . . 6 ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | |
| 18 | 17 | oion 9465 | . . . . 5 ⊢ ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On) |
| 19 | 16, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ On) |
| 20 | 7 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp ∅) |
| 21 | 20 | fsuppimpd 9296 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
| 22 | 17 | oien 9467 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅)) |
| 23 | 16, 15, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅)) |
| 24 | enfii 9127 | . . . . 5 ⊢ (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin) | |
| 25 | 21, 23, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ Fin) |
| 26 | 19, 25 | elind 4159 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ (On ∩ Fin)) |
| 27 | onfin2 9157 | . . 3 ⊢ ω = (On ∩ Fin) | |
| 28 | 26, 27 | eleqtrrdi 2839 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ ω) |
| 29 | 15, 28 | jca 511 | 1 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 E cep 5530 We wwe 5583 dom cdm 5631 Oncon0 6320 ⟶wf 6495 (class class class)co 7369 ωcom 7822 supp csupp 8116 ≈ cen 8892 Fincfn 8895 finSupp cfsupp 9288 OrdIsocoi 9438 CNF ccnf 9590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-seqom 8393 df-1o 8411 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-cnf 9591 |
| This theorem is referenced by: cantnfval2 9598 cantnfle 9600 cantnflt 9601 cantnflt2 9602 cantnff 9603 cantnfp1lem2 9608 cantnfp1lem3 9609 cantnflem1b 9615 cantnflem1d 9617 cantnflem1 9618 cnfcomlem 9628 cnfcom 9629 cnfcom2lem 9630 cnfcom3lem 9632 |
| Copyright terms: Public domain | W3C validator |