Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cantnfcl | Structured version Visualization version GIF version |
Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Ref | Expression |
---|---|
cantnfcl | ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssdm 7964 | . . . . 5 ⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | |
2 | cantnfcl.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
3 | cantnfs.s | . . . . . . . 8 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
4 | cantnfs.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ On) | |
5 | cantnfs.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ On) | |
6 | 3, 4, 5 | cantnfs 9354 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
7 | 2, 6 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
8 | 7 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
9 | 1, 8 | fssdm 6604 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
10 | onss 7611 | . . . . 5 ⊢ (𝐵 ∈ On → 𝐵 ⊆ On) | |
11 | 5, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ On) |
12 | 9, 11 | sstrd 3927 | . . 3 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
13 | epweon 7603 | . . 3 ⊢ E We On | |
14 | wess 5567 | . . 3 ⊢ ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅))) | |
15 | 12, 13, 14 | mpisyl 21 | . 2 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
16 | ovexd 7290 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
17 | cantnfcl.g | . . . . . 6 ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | |
18 | 17 | oion 9225 | . . . . 5 ⊢ ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On) |
19 | 16, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ On) |
20 | 7 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp ∅) |
21 | 20 | fsuppimpd 9065 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
22 | 17 | oien 9227 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅)) |
23 | 16, 15, 22 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅)) |
24 | enfii 8932 | . . . . 5 ⊢ (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin) | |
25 | 21, 23, 24 | syl2anc 583 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ Fin) |
26 | 19, 25 | elind 4124 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ (On ∩ Fin)) |
27 | onfin2 8945 | . . 3 ⊢ ω = (On ∩ Fin) | |
28 | 26, 27 | eleqtrrdi 2850 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ ω) |
29 | 15, 28 | jca 511 | 1 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 E cep 5485 We wwe 5534 dom cdm 5580 Oncon0 6251 ⟶wf 6414 (class class class)co 7255 ωcom 7687 supp csupp 7948 ≈ cen 8688 Fincfn 8691 finSupp cfsupp 9058 OrdIsocoi 9198 CNF ccnf 9349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seqom 8249 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-cnf 9350 |
This theorem is referenced by: cantnfval2 9357 cantnfle 9359 cantnflt 9360 cantnflt2 9361 cantnff 9362 cantnfp1lem2 9367 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1d 9376 cantnflem1 9377 cnfcomlem 9387 cnfcom 9388 cnfcom2lem 9389 cnfcom3lem 9391 |
Copyright terms: Public domain | W3C validator |