MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfcl Structured version   Visualization version   GIF version

Theorem cantnfcl 9698
Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
Assertion
Ref Expression
cantnfcl (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))

Proof of Theorem cantnfcl
StepHypRef Expression
1 suppssdm 8188 . . . . 5 (𝐹 supp ∅) ⊆ dom 𝐹
2 cantnfcl.f . . . . . . 7 (𝜑𝐹𝑆)
3 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
4 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
5 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
63, 4, 5cantnfs 9697 . . . . . . 7 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
72, 6mpbid 231 . . . . . 6 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
87simpld 493 . . . . 5 (𝜑𝐹:𝐵𝐴)
91, 8fssdm 6747 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
10 onss 7793 . . . . 5 (𝐵 ∈ On → 𝐵 ⊆ On)
115, 10syl 17 . . . 4 (𝜑𝐵 ⊆ On)
129, 11sstrd 3992 . . 3 (𝜑 → (𝐹 supp ∅) ⊆ On)
13 epweon 7783 . . 3 E We On
14 wess 5669 . . 3 ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅)))
1512, 13, 14mpisyl 21 . 2 (𝜑 → E We (𝐹 supp ∅))
16 ovexd 7461 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ V)
17 cantnfcl.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
1817oion 9567 . . . . 5 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1916, 18syl 17 . . . 4 (𝜑 → dom 𝐺 ∈ On)
207simprd 494 . . . . . 6 (𝜑𝐹 finSupp ∅)
2120fsuppimpd 9401 . . . . 5 (𝜑 → (𝐹 supp ∅) ∈ Fin)
2217oien 9569 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
2316, 15, 22syl2anc 582 . . . . 5 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
24 enfii 9220 . . . . 5 (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin)
2521, 23, 24syl2anc 582 . . . 4 (𝜑 → dom 𝐺 ∈ Fin)
2619, 25elind 4196 . . 3 (𝜑 → dom 𝐺 ∈ (On ∩ Fin))
27 onfin2 9262 . . 3 ω = (On ∩ Fin)
2826, 27eleqtrrdi 2840 . 2 (𝜑 → dom 𝐺 ∈ ω)
2915, 28jca 510 1 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cin 3948  wss 3949  c0 4326   class class class wbr 5152   E cep 5585   We wwe 5636  dom cdm 5682  Oncon0 6374  wf 6549  (class class class)co 7426  ωcom 7876   supp csupp 8171  cen 8967  Fincfn 8970   finSupp cfsupp 9393  OrdIsocoi 9540   CNF ccnf 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-seqom 8475  df-1o 8493  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-oi 9541  df-cnf 9693
This theorem is referenced by:  cantnfval2  9700  cantnfle  9702  cantnflt  9703  cantnflt2  9704  cantnff  9705  cantnfp1lem2  9710  cantnfp1lem3  9711  cantnflem1b  9717  cantnflem1d  9719  cantnflem1  9720  cnfcomlem  9730  cnfcom  9731  cnfcom2lem  9732  cnfcom3lem  9734
  Copyright terms: Public domain W3C validator