![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnfcl | Structured version Visualization version GIF version |
Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Ref | Expression |
---|---|
cantnfcl | ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssdm 8188 | . . . . 5 ⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | |
2 | cantnfcl.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
3 | cantnfs.s | . . . . . . . 8 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
4 | cantnfs.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ On) | |
5 | cantnfs.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ On) | |
6 | 3, 4, 5 | cantnfs 9697 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
7 | 2, 6 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
8 | 7 | simpld 493 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
9 | 1, 8 | fssdm 6747 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
10 | onss 7793 | . . . . 5 ⊢ (𝐵 ∈ On → 𝐵 ⊆ On) | |
11 | 5, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ On) |
12 | 9, 11 | sstrd 3992 | . . 3 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
13 | epweon 7783 | . . 3 ⊢ E We On | |
14 | wess 5669 | . . 3 ⊢ ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅))) | |
15 | 12, 13, 14 | mpisyl 21 | . 2 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
16 | ovexd 7461 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
17 | cantnfcl.g | . . . . . 6 ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | |
18 | 17 | oion 9567 | . . . . 5 ⊢ ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On) |
19 | 16, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ On) |
20 | 7 | simprd 494 | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp ∅) |
21 | 20 | fsuppimpd 9401 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
22 | 17 | oien 9569 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅)) |
23 | 16, 15, 22 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅)) |
24 | enfii 9220 | . . . . 5 ⊢ (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin) | |
25 | 21, 23, 24 | syl2anc 582 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ Fin) |
26 | 19, 25 | elind 4196 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ (On ∩ Fin)) |
27 | onfin2 9262 | . . 3 ⊢ ω = (On ∩ Fin) | |
28 | 26, 27 | eleqtrrdi 2840 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ ω) |
29 | 15, 28 | jca 510 | 1 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 class class class wbr 5152 E cep 5585 We wwe 5636 dom cdm 5682 Oncon0 6374 ⟶wf 6549 (class class class)co 7426 ωcom 7876 supp csupp 8171 ≈ cen 8967 Fincfn 8970 finSupp cfsupp 9393 OrdIsocoi 9540 CNF ccnf 9692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-seqom 8475 df-1o 8493 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-oi 9541 df-cnf 9693 |
This theorem is referenced by: cantnfval2 9700 cantnfle 9702 cantnflt 9703 cantnflt2 9704 cantnff 9705 cantnfp1lem2 9710 cantnfp1lem3 9711 cantnflem1b 9717 cantnflem1d 9719 cantnflem1 9720 cnfcomlem 9730 cnfcom 9731 cnfcom2lem 9732 cnfcom3lem 9734 |
Copyright terms: Public domain | W3C validator |