![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdval | Structured version Visualization version GIF version |
Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
wrdval | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 14472 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
2 | eliun 5001 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆 ↑m (0..^𝑙))) | |
3 | ovex 7445 | . . . . . 6 ⊢ (0..^𝑙) ∈ V | |
4 | elmapg 8839 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑉 ∧ (0..^𝑙) ∈ V) → (𝑤 ∈ (𝑆 ↑m (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆)) | |
5 | 3, 4 | mpan2 688 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (𝑤 ∈ (𝑆 ↑m (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
6 | 5 | rexbidv 3177 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆 ↑m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
7 | 2, 6 | bitrid 283 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑤 ∈ ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
8 | 7 | eqabdv 2866 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
9 | 1, 8 | eqtr4id 2790 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {cab 2708 ∃wrex 3069 Vcvv 3473 ∪ ciun 4997 ⟶wf 6539 (class class class)co 7412 ↑m cmap 8826 0cc0 11116 ℕ0cn0 12479 ..^cfzo 13634 Word cword 14471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-word 14472 |
This theorem is referenced by: wrdexg 14481 |
Copyright terms: Public domain | W3C validator |