![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdval | Structured version Visualization version GIF version |
Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
wrdval | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4714 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆 ↑𝑚 (0..^𝑙))) | |
2 | ovex 6910 | . . . . . 6 ⊢ (0..^𝑙) ∈ V | |
3 | elmapg 8108 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑉 ∧ (0..^𝑙) ∈ V) → (𝑤 ∈ (𝑆 ↑𝑚 (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆)) | |
4 | 2, 3 | mpan2 683 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (𝑤 ∈ (𝑆 ↑𝑚 (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
5 | 4 | rexbidv 3233 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆 ↑𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
6 | 1, 5 | syl5bb 275 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑤 ∈ ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
7 | 6 | abbi2dv 2919 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙)) = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
8 | df-word 13535 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
9 | 7, 8 | syl6reqr 2852 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑𝑚 (0..^𝑙))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 {cab 2785 ∃wrex 3090 Vcvv 3385 ∪ ciun 4710 ⟶wf 6097 (class class class)co 6878 ↑𝑚 cmap 8095 0cc0 10224 ℕ0cn0 11580 ..^cfzo 12720 Word cword 13534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 df-word 13535 |
This theorem is referenced by: wrdexg 13544 |
Copyright terms: Public domain | W3C validator |