MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdval Structured version   Visualization version   GIF version

Theorem wrdval 14425
Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
wrdval (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)))
Distinct variable groups:   𝑆,𝑙   𝑉,𝑙

Proof of Theorem wrdval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-word 14423 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
2 eliun 4945 . . . 4 (𝑤 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆m (0..^𝑙)))
3 ovex 7385 . . . . . 6 (0..^𝑙) ∈ V
4 elmapg 8769 . . . . . 6 ((𝑆𝑉 ∧ (0..^𝑙) ∈ V) → (𝑤 ∈ (𝑆m (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆))
53, 4mpan2 691 . . . . 5 (𝑆𝑉 → (𝑤 ∈ (𝑆m (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆))
65rexbidv 3157 . . . 4 (𝑆𝑉 → (∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
72, 6bitrid 283 . . 3 (𝑆𝑉 → (𝑤 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
87eqabdv 2866 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
91, 8eqtr4id 2787 1 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437   ciun 4941  wf 6482  (class class class)co 7352  m cmap 8756  0cc0 11013  0cn0 12388  ..^cfzo 13556  Word cword 14422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-word 14423
This theorem is referenced by:  wrdexg  14433
  Copyright terms: Public domain W3C validator