MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdval Structured version   Visualization version   GIF version

Theorem wrdval 14420
Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
wrdval (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)))
Distinct variable groups:   𝑆,𝑙   𝑉,𝑙

Proof of Theorem wrdval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-word 14418 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
2 eliun 4945 . . . 4 (𝑤 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆m (0..^𝑙)))
3 ovex 7379 . . . . . 6 (0..^𝑙) ∈ V
4 elmapg 8763 . . . . . 6 ((𝑆𝑉 ∧ (0..^𝑙) ∈ V) → (𝑤 ∈ (𝑆m (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆))
53, 4mpan2 691 . . . . 5 (𝑆𝑉 → (𝑤 ∈ (𝑆m (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆))
65rexbidv 3156 . . . 4 (𝑆𝑉 → (∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
72, 6bitrid 283 . . 3 (𝑆𝑉 → (𝑤 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
87eqabdv 2864 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
91, 8eqtr4id 2785 1 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436   ciun 4941  wf 6477  (class class class)co 7346  m cmap 8750  0cc0 11003  0cn0 12378  ..^cfzo 13551  Word cword 14417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-word 14418
This theorem is referenced by:  wrdexg  14428
  Copyright terms: Public domain W3C validator