| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdval | Structured version Visualization version GIF version | ||
| Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| wrdval | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 14530 | . 2 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 2 | eliun 4971 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆 ↑m (0..^𝑙))) | |
| 3 | ovex 7436 | . . . . . 6 ⊢ (0..^𝑙) ∈ V | |
| 4 | elmapg 8851 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑉 ∧ (0..^𝑙) ∈ V) → (𝑤 ∈ (𝑆 ↑m (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆)) | |
| 5 | 3, 4 | mpan2 691 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (𝑤 ∈ (𝑆 ↑m (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
| 6 | 5 | rexbidv 3164 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆 ↑m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
| 7 | 2, 6 | bitrid 283 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑤 ∈ ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
| 8 | 7 | eqabdv 2868 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
| 9 | 1, 8 | eqtr4id 2789 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 ∪ ciun 4967 ⟶wf 6526 (class class class)co 7403 ↑m cmap 8838 0cc0 11127 ℕ0cn0 12499 ..^cfzo 13669 Word cword 14529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-word 14530 |
| This theorem is referenced by: wrdexg 14540 |
| Copyright terms: Public domain | W3C validator |