MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdexg Structured version   Visualization version   GIF version

Theorem wrdexg 14547
Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
Assertion
Ref Expression
wrdexg (𝑆𝑉 → Word 𝑆 ∈ V)

Proof of Theorem wrdexg
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 wrdval 14539 . 2 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)))
2 nn0ex 12512 . . 3 0 ∈ V
3 ovexd 7445 . . . 4 ((𝑆𝑉𝑙 ∈ ℕ0) → (𝑆m (0..^𝑙)) ∈ V)
43ralrimiva 3133 . . 3 (𝑆𝑉 → ∀𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
5 iunexg 7967 . . 3 ((ℕ0 ∈ V ∧ ∀𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V) → 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
62, 4, 5sylancr 587 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
71, 6eqeltrd 2835 1 (𝑆𝑉 → Word 𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052  Vcvv 3464   ciun 4972  (class class class)co 7410  m cmap 8845  0cc0 11134  0cn0 12506  ..^cfzo 13676  Word cword 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-map 8847  df-nn 12246  df-n0 12507  df-word 14537
This theorem is referenced by:  wrdexb  14548  wrdexi  14549  wrdnfi  14571  elovmpowrd  14581  elovmptnn0wrd  14582  wrd2f1tovbij  14984  frmdbas  18835  frmdplusg  18837  efgval  19703  frgp0  19746  frgpmhm  19751  vrgpf  19754  vrgpinv  19755  frgpupf  19759  frgpup1  19761  frgpup2  19762  frgpup3lem  19763  frgpnabllem1  19859  frgpnabllem2  19860  wksfval  29594  wksvOLD  29605  wwlks  29822  clwwlk  29969  gsumwrd2dccat  33066  tocycval  33124  elrgspnlem1  33242  elrgspnlem2  33243  elrgspnlem3  33244  elrgspnlem4  33245  elrgspn  33246  elrgspnsubrunlem1  33247  elrgspnsubrunlem2  33248  elrgspnsubrun  33249  sseqval  34425  upwlksfval  48077
  Copyright terms: Public domain W3C validator