Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdexg | Structured version Visualization version GIF version |
Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.) |
Ref | Expression |
---|---|
wrdexg | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdval 13958 | . 2 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) | |
2 | nn0ex 11982 | . . 3 ⊢ ℕ0 ∈ V | |
3 | ovexd 7205 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑙 ∈ ℕ0) → (𝑆 ↑m (0..^𝑙)) ∈ V) | |
4 | 3 | ralrimiva 3096 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
5 | iunexg 7689 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) | |
6 | 2, 4, 5 | sylancr 590 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
7 | 1, 6 | eqeltrd 2833 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 ∀wral 3053 Vcvv 3398 ∪ ciun 4881 (class class class)co 7170 ↑m cmap 8437 0cc0 10615 ℕ0cn0 11976 ..^cfzo 13124 Word cword 13955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-1cn 10673 ax-addcl 10675 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-map 8439 df-nn 11717 df-n0 11977 df-word 13956 |
This theorem is referenced by: wrdexb 13966 wrdexi 13967 wrdnfi 13989 elovmpowrd 13999 elovmptnn0wrd 14000 wrd2f1tovbij 14413 frmdbas 18133 frmdplusg 18135 efgval 18961 frgp0 19004 frgpmhm 19009 vrgpf 19012 vrgpinv 19013 frgpupf 19017 frgpup1 19019 frgpup2 19020 frgpup3lem 19021 frgpnabllem1 19112 frgpnabllem2 19113 wksfval 27551 wksv 27561 wwlks 27773 clwwlk 27920 tocycval 30952 sseqval 31925 upwlksfval 44831 |
Copyright terms: Public domain | W3C validator |