MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdexg Structured version   Visualization version   GIF version

Theorem wrdexg 13583
Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
wrdexg (𝑆𝑉 → Word 𝑆 ∈ V)

Proof of Theorem wrdexg
Dummy variables 𝑠 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdval 13576 . 2 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)))
2 mapsspw 8157 . . . . . 6 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 ((0..^𝑙) × 𝑆)
3 elfzoelz 12764 . . . . . . . . 9 (𝑠 ∈ (0..^𝑙) → 𝑠 ∈ ℤ)
43ssriv 3830 . . . . . . . 8 (0..^𝑙) ⊆ ℤ
5 xpss1 5360 . . . . . . . 8 ((0..^𝑙) ⊆ ℤ → ((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆))
64, 5ax-mp 5 . . . . . . 7 ((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆)
7 sspwb 5137 . . . . . . 7 (((0..^𝑙) × 𝑆) ⊆ (ℤ × 𝑆) ↔ 𝒫 ((0..^𝑙) × 𝑆) ⊆ 𝒫 (ℤ × 𝑆))
86, 7mpbi 222 . . . . . 6 𝒫 ((0..^𝑙) × 𝑆) ⊆ 𝒫 (ℤ × 𝑆)
92, 8sstri 3835 . . . . 5 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆)
109rgenw 3132 . . . 4 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆)
11 iunss 4780 . . . 4 ( 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) ↔ ∀𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆))
1210, 11mpbir 223 . . 3 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆)
13 zex 11712 . . . . 5 ℤ ∈ V
14 xpexg 7219 . . . . 5 ((ℤ ∈ V ∧ 𝑆𝑉) → (ℤ × 𝑆) ∈ V)
1513, 14mpan 683 . . . 4 (𝑆𝑉 → (ℤ × 𝑆) ∈ V)
1615pwexd 5078 . . 3 (𝑆𝑉 → 𝒫 (ℤ × 𝑆) ∈ V)
17 ssexg 5028 . . 3 (( 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ⊆ 𝒫 (ℤ × 𝑆) ∧ 𝒫 (ℤ × 𝑆) ∈ V) → 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ∈ V)
1812, 16, 17sylancr 583 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ∈ V)
191, 18eqeltrd 2905 1 (𝑆𝑉 → Word 𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  wral 3116  Vcvv 3413  wss 3797  𝒫 cpw 4377   ciun 4739   × cxp 5339  (class class class)co 6904  𝑚 cmap 8121  0cc0 10251  0cn0 11617  cz 11703  ..^cfzo 12759  Word cword 13573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-fv 6130  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-1st 7427  df-2nd 7428  df-map 8123  df-pm 8124  df-neg 10587  df-z 11704  df-uz 11968  df-fz 12619  df-fzo 12760  df-word 13574
This theorem is referenced by:  wrdexb  13584  wrdexi  13585  wrdnfi  13607  elovmpt2wrd  13617  elovmptnn0wrd  13618  wrd2f1tovbij  14081  frmdbas  17742  frmdplusg  17744  vrmdfval  17746  efgval  18480  frgp0  18525  frgpmhm  18530  vrgpf  18533  vrgpinv  18534  frgpupf  18538  frgpup1  18540  frgpup2  18541  frgpup3lem  18542  frgpnabllem1  18628  frgpnabllem2  18629  ablfaclem1  18837  israg  26008  wksfval  26906  wksv  26916  wwlks  27133  clwwlk  27311  sseqval  30995  upwlksfval  42562
  Copyright terms: Public domain W3C validator