| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdexg | Structured version Visualization version GIF version | ||
| Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.) |
| Ref | Expression |
|---|---|
| wrdexg | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdval 14423 | . 2 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) | |
| 2 | nn0ex 12387 | . . 3 ⊢ ℕ0 ∈ V | |
| 3 | ovexd 7381 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑙 ∈ ℕ0) → (𝑆 ↑m (0..^𝑙)) ∈ V) | |
| 4 | 3 | ralrimiva 3124 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
| 5 | iunexg 7895 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) | |
| 6 | 2, 4, 5 | sylancr 587 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
| 7 | 1, 6 | eqeltrd 2831 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∪ ciun 4941 (class class class)co 7346 ↑m cmap 8750 0cc0 11006 ℕ0cn0 12381 ..^cfzo 13554 Word cword 14420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-map 8752 df-nn 12126 df-n0 12382 df-word 14421 |
| This theorem is referenced by: wrdexb 14432 wrdexi 14433 wrdnfi 14455 elovmpowrd 14465 elovmptnn0wrd 14466 wrd2f1tovbij 14867 chnexg 18524 frmdbas 18760 frmdplusg 18762 efgval 19630 frgp0 19673 frgpmhm 19678 vrgpf 19681 vrgpinv 19682 frgpupf 19686 frgpup1 19688 frgpup2 19689 frgpup3lem 19690 frgpnabllem1 19786 frgpnabllem2 19787 wksfval 29589 wwlks 29814 clwwlk 29961 gsumwrd2dccat 33045 tocycval 33075 elrgspnlem1 33207 elrgspnlem2 33208 elrgspnlem3 33209 elrgspnlem4 33210 elrgspn 33211 elrgspnsubrunlem1 33212 elrgspnsubrunlem2 33213 elrgspnsubrun 33214 sseqval 34399 upwlksfval 48172 |
| Copyright terms: Public domain | W3C validator |