MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdexg Structured version   Visualization version   GIF version

Theorem wrdexg 14572
Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
Assertion
Ref Expression
wrdexg (𝑆𝑉 → Word 𝑆 ∈ V)

Proof of Theorem wrdexg
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 wrdval 14565 . 2 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)))
2 nn0ex 12559 . . 3 0 ∈ V
3 ovexd 7483 . . . 4 ((𝑆𝑉𝑙 ∈ ℕ0) → (𝑆m (0..^𝑙)) ∈ V)
43ralrimiva 3152 . . 3 (𝑆𝑉 → ∀𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
5 iunexg 8004 . . 3 ((ℕ0 ∈ V ∧ ∀𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V) → 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
62, 4, 5sylancr 586 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
71, 6eqeltrd 2844 1 (𝑆𝑉 → Word 𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  Vcvv 3488   ciun 5015  (class class class)co 7448  m cmap 8884  0cc0 11184  0cn0 12553  ..^cfzo 13711  Word cword 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-nn 12294  df-n0 12554  df-word 14563
This theorem is referenced by:  wrdexb  14573  wrdexi  14574  wrdnfi  14596  elovmpowrd  14606  elovmptnn0wrd  14607  wrd2f1tovbij  15009  frmdbas  18887  frmdplusg  18889  efgval  19759  frgp0  19802  frgpmhm  19807  vrgpf  19810  vrgpinv  19811  frgpupf  19815  frgpup1  19817  frgpup2  19818  frgpup3lem  19819  frgpnabllem1  19915  frgpnabllem2  19916  wksfval  29645  wksvOLD  29656  wwlks  29868  clwwlk  30015  tocycval  33101  sseqval  34353  upwlksfval  47858
  Copyright terms: Public domain W3C validator