| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdexg | Structured version Visualization version GIF version | ||
| Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.) |
| Ref | Expression |
|---|---|
| wrdexg | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdval 14539 | . 2 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) | |
| 2 | nn0ex 12512 | . . 3 ⊢ ℕ0 ∈ V | |
| 3 | ovexd 7445 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑙 ∈ ℕ0) → (𝑆 ↑m (0..^𝑙)) ∈ V) | |
| 4 | 3 | ralrimiva 3133 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
| 5 | iunexg 7967 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) | |
| 6 | 2, 4, 5 | sylancr 587 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
| 7 | 1, 6 | eqeltrd 2835 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∪ ciun 4972 (class class class)co 7410 ↑m cmap 8845 0cc0 11134 ℕ0cn0 12506 ..^cfzo 13676 Word cword 14536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-map 8847 df-nn 12246 df-n0 12507 df-word 14537 |
| This theorem is referenced by: wrdexb 14548 wrdexi 14549 wrdnfi 14571 elovmpowrd 14581 elovmptnn0wrd 14582 wrd2f1tovbij 14984 frmdbas 18835 frmdplusg 18837 efgval 19703 frgp0 19746 frgpmhm 19751 vrgpf 19754 vrgpinv 19755 frgpupf 19759 frgpup1 19761 frgpup2 19762 frgpup3lem 19763 frgpnabllem1 19859 frgpnabllem2 19860 wksfval 29594 wksvOLD 29605 wwlks 29822 clwwlk 29969 gsumwrd2dccat 33066 tocycval 33124 elrgspnlem1 33242 elrgspnlem2 33243 elrgspnlem3 33244 elrgspnlem4 33245 elrgspn 33246 elrgspnsubrunlem1 33247 elrgspnsubrunlem2 33248 elrgspnsubrun 33249 sseqval 34425 upwlksfval 48077 |
| Copyright terms: Public domain | W3C validator |