| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdexg | Structured version Visualization version GIF version | ||
| Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.) |
| Ref | Expression |
|---|---|
| wrdexg | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdval 14481 | . 2 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) | |
| 2 | nn0ex 12448 | . . 3 ⊢ ℕ0 ∈ V | |
| 3 | ovexd 7422 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑙 ∈ ℕ0) → (𝑆 ↑m (0..^𝑙)) ∈ V) | |
| 4 | 3 | ralrimiva 3125 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
| 5 | iunexg 7942 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) | |
| 6 | 2, 4, 5 | sylancr 587 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
| 7 | 1, 6 | eqeltrd 2828 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∪ ciun 4955 (class class class)co 7387 ↑m cmap 8799 0cc0 11068 ℕ0cn0 12442 ..^cfzo 13615 Word cword 14478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 df-n0 12443 df-word 14479 |
| This theorem is referenced by: wrdexb 14490 wrdexi 14491 wrdnfi 14513 elovmpowrd 14523 elovmptnn0wrd 14524 wrd2f1tovbij 14926 frmdbas 18779 frmdplusg 18781 efgval 19647 frgp0 19690 frgpmhm 19695 vrgpf 19698 vrgpinv 19699 frgpupf 19703 frgpup1 19705 frgpup2 19706 frgpup3lem 19707 frgpnabllem1 19803 frgpnabllem2 19804 wksfval 29537 wksvOLD 29548 wwlks 29765 clwwlk 29912 gsumwrd2dccat 33007 tocycval 33065 elrgspnlem1 33193 elrgspnlem2 33194 elrgspnlem3 33195 elrgspnlem4 33196 elrgspn 33197 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 elrgspnsubrun 33200 sseqval 34379 upwlksfval 48120 |
| Copyright terms: Public domain | W3C validator |