| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdexg | Structured version Visualization version GIF version | ||
| Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.) |
| Ref | Expression |
|---|---|
| wrdexg | ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdval 14425 | . 2 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙))) | |
| 2 | nn0ex 12394 | . . 3 ⊢ ℕ0 ∈ V | |
| 3 | ovexd 7387 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑙 ∈ ℕ0) → (𝑆 ↑m (0..^𝑙)) ∈ V) | |
| 4 | 3 | ralrimiva 3125 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
| 5 | iunexg 7901 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) | |
| 6 | 2, 4, 5 | sylancr 587 | . 2 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑙 ∈ ℕ0 (𝑆 ↑m (0..^𝑙)) ∈ V) |
| 7 | 1, 6 | eqeltrd 2833 | 1 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∪ ciun 4941 (class class class)co 7352 ↑m cmap 8756 0cc0 11013 ℕ0cn0 12388 ..^cfzo 13556 Word cword 14422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-map 8758 df-nn 12133 df-n0 12389 df-word 14423 |
| This theorem is referenced by: wrdexb 14434 wrdexi 14435 wrdnfi 14457 elovmpowrd 14467 elovmptnn0wrd 14468 wrd2f1tovbij 14869 chnexg 18526 frmdbas 18762 frmdplusg 18764 efgval 19631 frgp0 19674 frgpmhm 19679 vrgpf 19682 vrgpinv 19683 frgpupf 19687 frgpup1 19689 frgpup2 19690 frgpup3lem 19691 frgpnabllem1 19787 frgpnabllem2 19788 wksfval 29590 wwlks 29815 clwwlk 29965 gsumwrd2dccat 33054 tocycval 33084 elrgspnlem1 33216 elrgspnlem2 33217 elrgspnlem3 33218 elrgspnlem4 33219 elrgspn 33220 elrgspnsubrunlem1 33221 elrgspnsubrunlem2 33222 elrgspnsubrun 33223 sseqval 34422 upwlksfval 48260 |
| Copyright terms: Public domain | W3C validator |