MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdexg Structured version   Visualization version   GIF version

Theorem wrdexg 14481
Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by JJ, 18-Nov-2022.)
Assertion
Ref Expression
wrdexg (𝑆𝑉 → Word 𝑆 ∈ V)

Proof of Theorem wrdexg
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 wrdval 14474 . 2 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)))
2 nn0ex 12485 . . 3 0 ∈ V
3 ovexd 7447 . . . 4 ((𝑆𝑉𝑙 ∈ ℕ0) → (𝑆m (0..^𝑙)) ∈ V)
43ralrimiva 3145 . . 3 (𝑆𝑉 → ∀𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
5 iunexg 7954 . . 3 ((ℕ0 ∈ V ∧ ∀𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V) → 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
62, 4, 5sylancr 586 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆m (0..^𝑙)) ∈ V)
71, 6eqeltrd 2832 1 (𝑆𝑉 → Word 𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wral 3060  Vcvv 3473   ciun 4997  (class class class)co 7412  m cmap 8826  0cc0 11116  0cn0 12479  ..^cfzo 13634  Word cword 14471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-1cn 11174  ax-addcl 11176
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-map 8828  df-nn 12220  df-n0 12480  df-word 14472
This theorem is referenced by:  wrdexb  14482  wrdexi  14483  wrdnfi  14505  elovmpowrd  14515  elovmptnn0wrd  14516  wrd2f1tovbij  14918  frmdbas  18772  frmdplusg  18774  efgval  19630  frgp0  19673  frgpmhm  19678  vrgpf  19681  vrgpinv  19682  frgpupf  19686  frgpup1  19688  frgpup2  19689  frgpup3lem  19690  frgpnabllem1  19786  frgpnabllem2  19787  wksfval  29148  wksvOLD  29159  wwlks  29371  clwwlk  29518  tocycval  32552  sseqval  33700  upwlksfval  46824
  Copyright terms: Public domain W3C validator