Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnidresex | Structured version Visualization version GIF version |
Description: Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
xrnidresex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 7752 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( I ↾ 𝐴) ∈ V) |
3 | xrnresex 36518 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( I ↾ 𝐴) ∈ V) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V) | |
4 | 2, 3 | mpd3an3 1461 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3430 I cid 5484 ↾ cres 5587 ⋉ cxrn 36318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-fo 6433 df-fv 6435 df-1st 7821 df-2nd 7822 df-xrn 36487 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |