NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  coass GIF version

Theorem coass 5098
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by set.mm contributors, 27-Jan-1997.)
Assertion
Ref Expression
coass ((A B) C) = (A (B C))

Proof of Theorem coass
Dummy variables x y z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 1741 . . . . 5 (wz((xCz zBw) wAy) ↔ zw((xCz zBw) wAy))
2 anass 630 . . . . . 6 (((xCz zBw) wAy) ↔ (xCz (zBw wAy)))
322exbii 1583 . . . . 5 (zw((xCz zBw) wAy) ↔ zw(xCz (zBw wAy)))
41, 3bitr2i 241 . . . 4 (zw(xCz (zBw wAy)) ↔ wz((xCz zBw) wAy))
5 brco 4884 . . . . . . 7 (z(A B)yw(zBw wAy))
65anbi2i 675 . . . . . 6 ((xCz z(A B)y) ↔ (xCz w(zBw wAy)))
7 19.42v 1905 . . . . . 6 (w(xCz (zBw wAy)) ↔ (xCz w(zBw wAy)))
86, 7bitr4i 243 . . . . 5 ((xCz z(A B)y) ↔ w(xCz (zBw wAy)))
98exbii 1582 . . . 4 (z(xCz z(A B)y) ↔ zw(xCz (zBw wAy)))
10 brco 4884 . . . . . . 7 (x(B C)wz(xCz zBw))
1110anbi1i 676 . . . . . 6 ((x(B C)w wAy) ↔ (z(xCz zBw) wAy))
12 19.41v 1901 . . . . . 6 (z((xCz zBw) wAy) ↔ (z(xCz zBw) wAy))
1311, 12bitr4i 243 . . . . 5 ((x(B C)w wAy) ↔ z((xCz zBw) wAy))
1413exbii 1582 . . . 4 (w(x(B C)w wAy) ↔ wz((xCz zBw) wAy))
154, 9, 143bitr4i 268 . . 3 (z(xCz z(A B)y) ↔ w(x(B C)w wAy))
16 brco 4884 . . 3 (x((A B) C)yz(xCz z(A B)y))
17 brco 4884 . . 3 (x(A (B C))yw(x(B C)w wAy))
1815, 16, 173bitr4i 268 . 2 (x((A B) C)yx(A (B C))y)
1918eqbrriv 4852 1 ((A B) C) = (A (B C))
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   class class class wbr 4640   ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727
This theorem is referenced by:  cnvpprod  5842  enmap2lem3  6066  enmap2lem5  6068  enmap1lem3  6072  enmap1lem5  6074
  Copyright terms: Public domain W3C validator