New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rnco | GIF version |
Description: The range of the composition of two classes. (Contributed by set.mm contributors, 12-Dec-2006.) |
Ref | Expression |
---|---|
rnco | ⊢ ran (A ∘ B) = ran (A ↾ ran B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brco 4884 | . . . . 5 ⊢ (x(A ∘ B)y ↔ ∃z(xBz ∧ zAy)) | |
2 | 1 | exbii 1582 | . . . 4 ⊢ (∃x x(A ∘ B)y ↔ ∃x∃z(xBz ∧ zAy)) |
3 | excom 1741 | . . . 4 ⊢ (∃x∃z(xBz ∧ zAy) ↔ ∃z∃x(xBz ∧ zAy)) | |
4 | ancom 437 | . . . . . . 7 ⊢ ((∃x xBz ∧ zAy) ↔ (zAy ∧ ∃x xBz)) | |
5 | 19.41v 1901 | . . . . . . 7 ⊢ (∃x(xBz ∧ zAy) ↔ (∃x xBz ∧ zAy)) | |
6 | elrn 4897 | . . . . . . . 8 ⊢ (z ∈ ran B ↔ ∃x xBz) | |
7 | 6 | anbi2i 675 | . . . . . . 7 ⊢ ((zAy ∧ z ∈ ran B) ↔ (zAy ∧ ∃x xBz)) |
8 | 4, 5, 7 | 3bitr4i 268 | . . . . . 6 ⊢ (∃x(xBz ∧ zAy) ↔ (zAy ∧ z ∈ ran B)) |
9 | brres 4950 | . . . . . 6 ⊢ (z(A ↾ ran B)y ↔ (zAy ∧ z ∈ ran B)) | |
10 | 8, 9 | bitr4i 243 | . . . . 5 ⊢ (∃x(xBz ∧ zAy) ↔ z(A ↾ ran B)y) |
11 | 10 | exbii 1582 | . . . 4 ⊢ (∃z∃x(xBz ∧ zAy) ↔ ∃z z(A ↾ ran B)y) |
12 | 2, 3, 11 | 3bitri 262 | . . 3 ⊢ (∃x x(A ∘ B)y ↔ ∃z z(A ↾ ran B)y) |
13 | elrn 4897 | . . 3 ⊢ (y ∈ ran (A ∘ B) ↔ ∃x x(A ∘ B)y) | |
14 | elrn 4897 | . . 3 ⊢ (y ∈ ran (A ↾ ran B) ↔ ∃z z(A ↾ ran B)y) | |
15 | 12, 13, 14 | 3bitr4i 268 | . 2 ⊢ (y ∈ ran (A ∘ B) ↔ y ∈ ran (A ↾ ran B)) |
16 | 15 | eqriv 2350 | 1 ⊢ ran (A ∘ B) = ran (A ↾ ran B) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 class class class wbr 4640 ∘ ccom 4722 ran crn 4774 ↾ cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-xp 4785 df-rn 4787 df-res 4789 |
This theorem is referenced by: rnco2 5089 |
Copyright terms: Public domain | W3C validator |