MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum2 Structured version   Visualization version   GIF version

Theorem dchrsum2 25038
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character 𝑋 is 0 if 𝑋 is non-principal and ϕ(𝑛) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g 𝐺 = (DChr‘𝑁)
dchrsum.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrsum.d 𝐷 = (Base‘𝐺)
dchrsum.1 1 = (0g𝐺)
dchrsum.x (𝜑𝑋𝐷)
dchrsum2.u 𝑈 = (Unit‘𝑍)
Assertion
Ref Expression
dchrsum2 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Distinct variable groups:   1 ,𝑎   𝜑,𝑎   𝑈,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝐺(𝑎)   𝑁(𝑎)

Proof of Theorem dchrsum2
Dummy variables 𝑘 𝑥 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2662 . 2 ((ϕ‘𝑁) = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁) ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
2 eqeq2 2662 . 2 (0 = if(𝑋 = 1 , (ϕ‘𝑁), 0) → (Σ𝑎𝑈 (𝑋𝑎) = 0 ↔ Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0)))
3 fveq1 6228 . . . . . 6 (𝑋 = 1 → (𝑋𝑎) = ( 1𝑎))
4 dchrsum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 dchrsum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 dchrsum.1 . . . . . . 7 1 = (0g𝐺)
7 dchrsum2.u . . . . . . 7 𝑈 = (Unit‘𝑍)
8 dchrsum.x . . . . . . . . 9 (𝜑𝑋𝐷)
9 dchrsum.d . . . . . . . . . 10 𝐷 = (Base‘𝐺)
104, 9dchrrcl 25010 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
118, 10syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 480 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑁 ∈ ℕ)
13 simpr 476 . . . . . . 7 ((𝜑𝑎𝑈) → 𝑎𝑈)
144, 5, 6, 7, 12, 13dchr1 25027 . . . . . 6 ((𝜑𝑎𝑈) → ( 1𝑎) = 1)
153, 14sylan9eqr 2707 . . . . 5 (((𝜑𝑎𝑈) ∧ 𝑋 = 1 ) → (𝑋𝑎) = 1)
1615an32s 863 . . . 4 (((𝜑𝑋 = 1 ) ∧ 𝑎𝑈) → (𝑋𝑎) = 1)
1716sumeq2dv 14477 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑎𝑈 1)
185, 7znunithash 19961 . . . . . . . . 9 (𝑁 ∈ ℕ → (#‘𝑈) = (ϕ‘𝑁))
1911, 18syl 17 . . . . . . . 8 (𝜑 → (#‘𝑈) = (ϕ‘𝑁))
2011phicld 15524 . . . . . . . . 9 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
2120nnnn0d 11389 . . . . . . . 8 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
2219, 21eqeltrd 2730 . . . . . . 7 (𝜑 → (#‘𝑈) ∈ ℕ0)
23 fvex 6239 . . . . . . . . 9 (Unit‘𝑍) ∈ V
247, 23eqeltri 2726 . . . . . . . 8 𝑈 ∈ V
25 hashclb 13187 . . . . . . . 8 (𝑈 ∈ V → (𝑈 ∈ Fin ↔ (#‘𝑈) ∈ ℕ0))
2624, 25ax-mp 5 . . . . . . 7 (𝑈 ∈ Fin ↔ (#‘𝑈) ∈ ℕ0)
2722, 26sylibr 224 . . . . . 6 (𝜑𝑈 ∈ Fin)
28 ax-1cn 10032 . . . . . 6 1 ∈ ℂ
29 fsumconst 14566 . . . . . 6 ((𝑈 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎𝑈 1 = ((#‘𝑈) · 1))
3027, 28, 29sylancl 695 . . . . 5 (𝜑 → Σ𝑎𝑈 1 = ((#‘𝑈) · 1))
3119oveq1d 6705 . . . . 5 (𝜑 → ((#‘𝑈) · 1) = ((ϕ‘𝑁) · 1))
3220nncnd 11074 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
3332mulid1d 10095 . . . . 5 (𝜑 → ((ϕ‘𝑁) · 1) = (ϕ‘𝑁))
3430, 31, 333eqtrd 2689 . . . 4 (𝜑 → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3534adantr 480 . . 3 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 1 = (ϕ‘𝑁))
3617, 35eqtrd 2685 . 2 ((𝜑𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = (ϕ‘𝑁))
374dchrabl 25024 . . . . . . . 8 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
38 ablgrp 18244 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
399, 6grpidcl 17497 . . . . . . . 8 (𝐺 ∈ Grp → 1𝐷)
4011, 37, 38, 394syl 19 . . . . . . 7 (𝜑1𝐷)
414, 5, 9, 7, 8, 40dchreq 25028 . . . . . 6 (𝜑 → (𝑋 = 1 ↔ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
4241notbid 307 . . . . 5 (𝜑 → (¬ 𝑋 = 1 ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘)))
43 rexnal 3024 . . . . 5 (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) ↔ ¬ ∀𝑘𝑈 (𝑋𝑘) = ( 1𝑘))
4442, 43syl6bbr 278 . . . 4 (𝜑 → (¬ 𝑋 = 1 ↔ ∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘)))
45 df-ne 2824 . . . . . 6 ((𝑋𝑘) ≠ ( 1𝑘) ↔ ¬ (𝑋𝑘) = ( 1𝑘))
4611adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑁 ∈ ℕ)
47 simpr 476 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝑈)
484, 5, 6, 7, 46, 47dchr1 25027 . . . . . . . 8 ((𝜑𝑘𝑈) → ( 1𝑘) = 1)
4948neeq2d 2883 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) ↔ (𝑋𝑘) ≠ 1))
5027adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑈 ∈ Fin)
51 eqid 2651 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
524, 5, 9, 51, 8dchrf 25012 . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
5351, 7unitss 18706 . . . . . . . . . . . . 13 𝑈 ⊆ (Base‘𝑍)
5453sseli 3632 . . . . . . . . . . . 12 (𝑎𝑈𝑎 ∈ (Base‘𝑍))
55 ffvelrn 6397 . . . . . . . . . . . 12 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋𝑎) ∈ ℂ)
5652, 54, 55syl2an 493 . . . . . . . . . . 11 ((𝜑𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5756adantlr 751 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋𝑎) ∈ ℂ)
5850, 57fsumcl 14508 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) ∈ ℂ)
59 0cnd 10071 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 0 ∈ ℂ)
6052adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑋:(Base‘𝑍)⟶ℂ)
61 simprl 809 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘𝑈)
6253, 61sseldi 3634 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 𝑘 ∈ (Base‘𝑍))
6360, 62ffvelrnd 6400 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ∈ ℂ)
64 subcl 10318 . . . . . . . . . 10 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋𝑘) − 1) ∈ ℂ)
6563, 28, 64sylancl 695 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ∈ ℂ)
66 simprr 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (𝑋𝑘) ≠ 1)
67 subeq0 10345 . . . . . . . . . . . 12 (((𝑋𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6863, 28, 67sylancl 695 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) = 0 ↔ (𝑋𝑘) = 1))
6968necon3bid 2867 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) ≠ 0 ↔ (𝑋𝑘) ≠ 1))
7066, 69mpbird 247 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) − 1) ≠ 0)
71 oveq2 6698 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘(.r𝑍)𝑥) = (𝑘(.r𝑍)𝑎))
7271fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑋‘(𝑘(.r𝑍)𝑥)) = (𝑋‘(𝑘(.r𝑍)𝑎)))
7372cbvsumv 14470 . . . . . . . . . . . . . 14 Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎))
744, 5, 9dchrmhm 25011 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
7574, 8sseldi 3634 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7675ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
7762adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑘 ∈ (Base‘𝑍))
7854adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → 𝑎 ∈ (Base‘𝑍))
79 eqid 2651 . . . . . . . . . . . . . . . . . 18 (mulGrp‘𝑍) = (mulGrp‘𝑍)
8079, 51mgpbas 18541 . . . . . . . . . . . . . . . . 17 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
81 eqid 2651 . . . . . . . . . . . . . . . . . 18 (.r𝑍) = (.r𝑍)
8279, 81mgpplusg 18539 . . . . . . . . . . . . . . . . 17 (.r𝑍) = (+g‘(mulGrp‘𝑍))
83 eqid 2651 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
84 cnfldmul 19800 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
8583, 84mgpplusg 18539 . . . . . . . . . . . . . . . . 17 · = (+g‘(mulGrp‘ℂfld))
8680, 82, 85mhmlin 17389 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑘 ∈ (Base‘𝑍) ∧ 𝑎 ∈ (Base‘𝑍)) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8776, 77, 78, 86syl3anc 1366 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑎𝑈) → (𝑋‘(𝑘(.r𝑍)𝑎)) = ((𝑋𝑘) · (𝑋𝑎)))
8887sumeq2dv 14477 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋‘(𝑘(.r𝑍)𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
8973, 88syl5eq 2697 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
90 fveq2 6229 . . . . . . . . . . . . . 14 (𝑎 = (𝑘(.r𝑍)𝑥) → (𝑋𝑎) = (𝑋‘(𝑘(.r𝑍)𝑥)))
9111nnnn0d 11389 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
925zncrng 19941 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
93 crngring 18604 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
94 eqid 2651 . . . . . . . . . . . . . . . . . 18 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
957, 94unitgrp 18713 . . . . . . . . . . . . . . . . 17 (𝑍 ∈ Ring → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
9691, 92, 93, 954syl 19 . . . . . . . . . . . . . . . 16 (𝜑 → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
9796adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp)
98 eqid 2651 . . . . . . . . . . . . . . . 16 (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐))) = (𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))
997, 94unitgrpbas 18712 . . . . . . . . . . . . . . . 16 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
10094, 82ressplusg 16040 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ V → (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈)))
10124, 100ax-mp 5 . . . . . . . . . . . . . . . 16 (.r𝑍) = (+g‘((mulGrp‘𝑍) ↾s 𝑈))
10298, 99, 101grplactf1o 17566 . . . . . . . . . . . . . . 15 ((((mulGrp‘𝑍) ↾s 𝑈) ∈ Grp ∧ 𝑘𝑈) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10397, 61, 102syl2anc 694 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘):𝑈1-1-onto𝑈)
10498, 99grplactval 17564 . . . . . . . . . . . . . . 15 ((𝑘𝑈𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10561, 104sylan 487 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) ∧ 𝑥𝑈) → (((𝑏𝑈 ↦ (𝑐𝑈 ↦ (𝑏(.r𝑍)𝑐)))‘𝑘)‘𝑥) = (𝑘(.r𝑍)𝑥))
10690, 50, 103, 105, 57fsumf1o 14498 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = Σ𝑥𝑈 (𝑋‘(𝑘(.r𝑍)𝑥)))
10750, 63, 57fsummulc2 14560 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 ((𝑋𝑘) · (𝑋𝑎)))
10889, 106, 1073eqtr4rd 2696 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → ((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
10958mulid2d 10096 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (1 · Σ𝑎𝑈 (𝑋𝑎)) = Σ𝑎𝑈 (𝑋𝑎))
110108, 109oveq12d 6708 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)))
11158subidd 10418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (Σ𝑎𝑈 (𝑋𝑎) − Σ𝑎𝑈 (𝑋𝑎)) = 0)
112110, 111eqtrd 2685 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))) = 0)
113 1cnd 10094 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → 1 ∈ ℂ)
11463, 113, 58subdird 10525 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) · Σ𝑎𝑈 (𝑋𝑎)) − (1 · Σ𝑎𝑈 (𝑋𝑎))))
11565mul01d 10273 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · 0) = 0)
116112, 114, 1153eqtr4d 2695 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → (((𝑋𝑘) − 1) · Σ𝑎𝑈 (𝑋𝑎)) = (((𝑋𝑘) − 1) · 0))
11758, 59, 65, 70, 116mulcanad 10700 . . . . . . . 8 ((𝜑 ∧ (𝑘𝑈 ∧ (𝑋𝑘) ≠ 1)) → Σ𝑎𝑈 (𝑋𝑎) = 0)
118117expr 642 . . . . . . 7 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
11949, 118sylbid 230 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
12045, 119syl5bir 233 . . . . 5 ((𝜑𝑘𝑈) → (¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
121120rexlimdva 3060 . . . 4 (𝜑 → (∃𝑘𝑈 ¬ (𝑋𝑘) = ( 1𝑘) → Σ𝑎𝑈 (𝑋𝑎) = 0))
12244, 121sylbid 230 . . 3 (𝜑 → (¬ 𝑋 = 1 → Σ𝑎𝑈 (𝑋𝑎) = 0))
123122imp 444 . 2 ((𝜑 ∧ ¬ 𝑋 = 1 ) → Σ𝑎𝑈 (𝑋𝑎) = 0)
1241, 2, 36, 123ifbothda 4156 1 (𝜑 → Σ𝑎𝑈 (𝑋𝑎) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  ifcif 4119  cmpt 4762  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  0cc0 9974  1c1 9975   · cmul 9979  cmin 10304  cn 11058  0cn0 11330  #chash 13157  Σcsu 14460  ϕcphi 15516  Basecbs 15904  s cress 15905  +gcplusg 15988  .rcmulr 15989  0gc0g 16147   MndHom cmhm 17380  Grpcgrp 17469  Abelcabl 18240  mulGrpcmgp 18535  Ringcrg 18593  CRingccrg 18594  Unitcui 18685  fldccnfld 19794  ℤ/nczn 19899  DChrcdchr 25002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-gcd 15264  df-phi 15518  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-imas 16215  df-qus 16216  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-rnghom 18763  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903  df-dchr 25003
This theorem is referenced by:  dchrsum  25039
  Copyright terms: Public domain W3C validator