Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem2 Structured version   Visualization version   GIF version

Theorem pellexlem2 36874
Description: Lemma for pellex 36879. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷))))

Proof of Theorem pellexlem2
StepHypRef Expression
1 simpl3 1064 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℕ)
21nnred 10979 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℝ)
32resqcld 12975 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℝ)
42sqge0d 12976 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (𝐵↑2))
53, 4absidd 14095 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(𝐵↑2)) = (𝐵↑2))
65eqcomd 2627 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) = (abs‘(𝐵↑2)))
76oveq2d 6620 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2))))
8 simpl2 1063 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℕ)
98nncnd 10980 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℂ)
109sqcld 12946 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴↑2) ∈ ℂ)
11 simpl1 1062 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ)
1211nncnd 10980 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℂ)
131nncnd 10980 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℂ)
1413sqcld 12946 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℂ)
1512, 14mulcld 10004 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
1610, 15subcld 10336 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ∈ ℂ)
171nnne0d 11009 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ≠ 0)
18 sqne0 12870 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
1918biimpar 502 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵↑2) ≠ 0)
2013, 17, 19syl2anc 692 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ≠ 0)
2116, 14, 20absdivd 14128 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2))))
227, 21eqtr4d 2658 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))))
2322oveq2d 6620 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))))
2416abscld 14109 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℝ)
2524recnd 10012 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℂ)
2625, 14, 20divcan2d 10747 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))))
2710, 15, 14, 20divsubdird 10784 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))))
289, 13, 17sqdivd 12961 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
2928eqcomd 2627 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) / (𝐵↑2)) = ((𝐴 / 𝐵)↑2))
3011nnred 10979 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℝ)
3111nnnn0d 11295 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ0)
3231nn0ge0d 11298 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 𝐷)
33 remsqsqrt 13931 . . . . . . . . 9 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘𝐷) · (√‘𝐷)) = 𝐷)
3430, 32, 33syl2anc 692 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) · (√‘𝐷)) = 𝐷)
3530, 32resqrtcld 14090 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈ ℝ)
3635recnd 10012 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈ ℂ)
3736sqvald 12945 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷)↑2) = ((√‘𝐷) · (√‘𝐷)))
3812, 14, 20divcan4d 10751 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = 𝐷)
3934, 37, 383eqtr4rd 2666 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = ((√‘𝐷)↑2))
4029, 39oveq12d 6622 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))) = (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)))
419, 13, 17divcld 10745 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℂ)
42 subsq 12912 . . . . . . . 8 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))))
4341, 36, 42syl2anc 692 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))))
4441, 36addcld 10003 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ)
458nnred 10979 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℝ)
4645, 1nndivred 11013 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℝ)
4746, 35resubcld 10402 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℝ)
4847recnd 10012 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℂ)
4944, 48mulcomd 10005 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5043, 49eqtrd 2655 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5127, 40, 503eqtrd 2659 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5251fveq2d 6152 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))))
5352oveq2d 6620 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))))
5423, 26, 533eqtr3d 2663 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))))
5548, 44absmuld 14127 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
5655oveq2d 6620 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) = ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
5748abscld 14109 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ)
5844abscld 14109 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ)
5957, 58remulcld 10014 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ)
603, 59remulcld 10014 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ)
61 2nn0 11253 . . . . . . . . 9 2 ∈ ℕ0
6261nn0negzi 11360 . . . . . . . 8 -2 ∈ ℤ
6362a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → -2 ∈ ℤ)
642, 17, 63reexpclzd 12974 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℝ)
6564, 58remulcld 10014 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ)
663, 65remulcld 10014 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ)
67 1red 9999 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ∈ ℝ)
68 2re 11034 . . . . . . 7 2 ∈ ℝ
6968a1i 11 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 2 ∈ ℝ)
7069, 35remulcld 10014 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 · (√‘𝐷)) ∈ ℝ)
7167, 70readdcld 10013 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
72 simpr 477 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2))
738nngt0d 11008 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐴)
741nngt0d 11008 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐵)
7545, 2, 73, 74divgt0d 10903 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐴 / 𝐵))
7611nngt0d 11008 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐷)
77 sqrtgt0 13933 . . . . . . . . . . 11 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 0 < (√‘𝐷))
7830, 76, 77syl2anc 692 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (√‘𝐷))
7946, 35, 75, 78addgt0d 10546 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < ((𝐴 / 𝐵) + (√‘𝐷)))
8079gt0ne0d 10536 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0)
81 absgt0 13998 . . . . . . . . 9 (((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ → (((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0 ↔ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
8281biimpa 501 . . . . . . . 8 ((((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ ∧ ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
8344, 80, 82syl2anc 692 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
84 ltmul1 10817 . . . . . . 7 (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ ∧ (𝐵↑-2) ∈ ℝ ∧ ((abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ ∧ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
8557, 64, 58, 83, 84syl112anc 1327 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
8672, 85mpbid 222 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
872, 17sqgt0d 12977 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐵↑2))
88 ltmul2 10818 . . . . . 6 ((((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧ ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))))
8959, 65, 3, 87, 88syl112anc 1327 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))))
9086, 89mpbid 222 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
9113, 17, 63expclzd 12953 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℂ)
9258recnd 10012 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ)
93 mulass 9968 . . . . . . . 8 (((𝐵↑2) ∈ ℂ ∧ (𝐵↑-2) ∈ ℂ ∧ (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
9493eqcomd 2627 . . . . . . 7 (((𝐵↑2) ∈ ℂ ∧ (𝐵↑-2) ∈ ℂ ∧ (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
9514, 91, 92, 94syl3anc 1323 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
96 expneg 12808 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑-2) = (1 / (𝐵↑2)))
9713, 61, 96sylancl 693 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) = (1 / (𝐵↑2)))
9897oveq2d 6620 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = ((𝐵↑2) · (1 / (𝐵↑2))))
9914, 20recidd 10740 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (1 / (𝐵↑2))) = 1)
10098, 99eqtrd 2655 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = 1)
101100oveq1d 6619 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
10292mulid2d 10002 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
10395, 101, 1023eqtrd 2659 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
10441, 36addcomd 10182 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = ((√‘𝐷) + (𝐴 / 𝐵)))
105 ppncan 10267 . . . . . . . . . 10 (((√‘𝐷) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = ((√‘𝐷) + (𝐴 / 𝐵)))
106105eqcomd 2627 . . . . . . . . 9 (((√‘𝐷) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))))
10736, 36, 41, 106syl3anc 1323 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))))
10836, 36addcld 10003 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) ∈ ℂ)
109108, 48addcomd 10182 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))))
110 2times 11089 . . . . . . . . . . . 12 ((√‘𝐷) ∈ ℂ → (2 · (√‘𝐷)) = ((√‘𝐷) + (√‘𝐷)))
111110eqcomd 2627 . . . . . . . . . . 11 ((√‘𝐷) ∈ ℂ → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷)))
11236, 111syl 17 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷)))
113112oveq2d 6620 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
114109, 113eqtrd 2655 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
115104, 107, 1143eqtrd 2659 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
116115fveq2d 6152 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))))
11747, 70readdcld 10013 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈ ℝ)
118117recnd 10012 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈ ℂ)
119118abscld 14109 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ∈ ℝ)
12070recnd 10012 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 · (√‘𝐷)) ∈ ℂ)
121120abscld 14109 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 · (√‘𝐷))) ∈ ℝ)
12257, 121readdcld 10013 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) ∈ ℝ)
12348, 120abstrid 14129 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))))
124 0le2 11055 . . . . . . . . . . . 12 0 ≤ 2
125124a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 2)
12630, 32sqrtge0d 14093 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (√‘𝐷))
12769, 35, 125, 126mulge0d 10548 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (2 · (√‘𝐷)))
12870, 127absidd 14095 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 · (√‘𝐷))) = (2 · (√‘𝐷)))
129128oveq2d 6620 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))))
1301nnsqcld 12969 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℕ)
131130nnge1d 11007 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ≤ (𝐵↑2))
132 0lt1 10494 . . . . . . . . . . . . . . . 16 0 < 1
133132a1i 11 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 1)
134 lerec 10850 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1)))
13567, 133, 3, 87, 134syl22anc 1324 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1)))
136131, 135mpbid 222 . . . . . . . . . . . . 13 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ (1 / 1))
137 1div1e1 10661 . . . . . . . . . . . . 13 (1 / 1) = 1
138136, 137syl6breq 4654 . . . . . . . . . . . 12 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ 1)
13997, 138eqbrtrd 4635 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ≤ 1)
14057, 64, 67, 72, 139ltletrd 10141 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < 1)
14157, 67, 140ltled 10129 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ≤ 1)
14257, 67, 70, 141leadd1dd 10585 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))) ≤ (1 + (2 · (√‘𝐷))))
143129, 142eqbrtrd 4635 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) ≤ (1 + (2 · (√‘𝐷))))
144119, 122, 71, 123, 143letrd 10138 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ (1 + (2 · (√‘𝐷))))
145116, 144eqbrtrd 4635 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ≤ (1 + (2 · (√‘𝐷))))
146103, 145eqbrtrd 4635 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ≤ (1 + (2 · (√‘𝐷))))
14760, 66, 71, 90, 146ltletrd 10141 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 · (√‘𝐷))))
14856, 147eqbrtrd 4635 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 · (√‘𝐷))))
14954, 148eqbrtrd 4635 1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  cexp 12800  csqrt 13907  abscabs 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910
This theorem is referenced by:  pellexlem3  36875
  Copyright terms: Public domain W3C validator