| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1qec | GIF version | ||
| Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) |
| Ref | Expression |
|---|---|
| 1qec | ⊢ (𝐴 ∈ N → 1Q = [〈𝐴, 𝐴〉] ~Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1nqqs 7484 | . 2 ⊢ 1Q = [〈1o, 1o〉] ~Q | |
| 2 | 1pi 7448 | . . . 4 ⊢ 1o ∈ N | |
| 3 | mulcanenqec 7519 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N ∧ 1o ∈ N) → [〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉] ~Q = [〈1o, 1o〉] ~Q ) | |
| 4 | 2, 2, 3 | mp3an23 1342 | . . 3 ⊢ (𝐴 ∈ N → [〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉] ~Q = [〈1o, 1o〉] ~Q ) |
| 5 | mulidpi 7451 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
| 6 | 5, 5 | jca 306 | . . . 4 ⊢ (𝐴 ∈ N → ((𝐴 ·N 1o) = 𝐴 ∧ (𝐴 ·N 1o) = 𝐴)) |
| 7 | opeq12 3827 | . . . 4 ⊢ (((𝐴 ·N 1o) = 𝐴 ∧ (𝐴 ·N 1o) = 𝐴) → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 = 〈𝐴, 𝐴〉) | |
| 8 | eceq1 6668 | . . . 4 ⊢ (〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 = 〈𝐴, 𝐴〉 → [〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉] ~Q = [〈𝐴, 𝐴〉] ~Q ) | |
| 9 | 6, 7, 8 | 3syl 17 | . . 3 ⊢ (𝐴 ∈ N → [〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉] ~Q = [〈𝐴, 𝐴〉] ~Q ) |
| 10 | 4, 9 | eqtr3d 2241 | . 2 ⊢ (𝐴 ∈ N → [〈1o, 1o〉] ~Q = [〈𝐴, 𝐴〉] ~Q ) |
| 11 | 1, 10 | eqtrid 2251 | 1 ⊢ (𝐴 ∈ N → 1Q = [〈𝐴, 𝐴〉] ~Q ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 〈cop 3641 (class class class)co 5957 1oc1o 6508 [cec 6631 Ncnpi 7405 ·N cmi 7407 ~Q ceq 7412 1Qc1q 7414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-1o 6515 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-ni 7437 df-mi 7439 df-enq 7480 df-1nqqs 7484 |
| This theorem is referenced by: recexnq 7523 |
| Copyright terms: Public domain | W3C validator |