ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1qec GIF version

Theorem 1qec 7483
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.)
Assertion
Ref Expression
1qec (𝐴N → 1Q = [⟨𝐴, 𝐴⟩] ~Q )

Proof of Theorem 1qec
StepHypRef Expression
1 df-1nqqs 7446 . 2 1Q = [⟨1o, 1o⟩] ~Q
2 1pi 7410 . . . 4 1oN
3 mulcanenqec 7481 . . . 4 ((𝐴N ∧ 1oN ∧ 1oN) → [⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩] ~Q = [⟨1o, 1o⟩] ~Q )
42, 2, 3mp3an23 1341 . . 3 (𝐴N → [⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩] ~Q = [⟨1o, 1o⟩] ~Q )
5 mulidpi 7413 . . . . 5 (𝐴N → (𝐴 ·N 1o) = 𝐴)
65, 5jca 306 . . . 4 (𝐴N → ((𝐴 ·N 1o) = 𝐴 ∧ (𝐴 ·N 1o) = 𝐴))
7 opeq12 3820 . . . 4 (((𝐴 ·N 1o) = 𝐴 ∧ (𝐴 ·N 1o) = 𝐴) → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ = ⟨𝐴, 𝐴⟩)
8 eceq1 6645 . . . 4 (⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ = ⟨𝐴, 𝐴⟩ → [⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩] ~Q = [⟨𝐴, 𝐴⟩] ~Q )
96, 7, 83syl 17 . . 3 (𝐴N → [⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩] ~Q = [⟨𝐴, 𝐴⟩] ~Q )
104, 9eqtr3d 2239 . 2 (𝐴N → [⟨1o, 1o⟩] ~Q = [⟨𝐴, 𝐴⟩] ~Q )
111, 10eqtrid 2249 1 (𝐴N → 1Q = [⟨𝐴, 𝐴⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cop 3635  (class class class)co 5934  1oc1o 6485  [cec 6608  Ncnpi 7367   ·N cmi 7369   ~Q ceq 7374  1Qc1q 7376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-ni 7399  df-mi 7401  df-enq 7442  df-1nqqs 7446
This theorem is referenced by:  recexnq  7485
  Copyright terms: Public domain W3C validator