ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negfcncf Unicode version

Theorem negfcncf 13229
Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
negfcncf.1  |-  G  =  ( x  e.  A  |-> 
-u ( F `  x ) )
Assertion
Ref Expression
negfcncf  |-  ( F  e.  ( A -cn-> CC )  ->  G  e.  ( A -cn-> CC ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    G( x)

Proof of Theorem negfcncf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cncff 13204 . . . . 5  |-  ( F  e.  ( A -cn-> CC )  ->  F : A
--> CC )
21ffvelrnda 5620 . . . 4  |-  ( ( F  e.  ( A
-cn-> CC )  /\  x  e.  A )  ->  ( F `  x )  e.  CC )
31feqmptd 5539 . . . 4  |-  ( F  e.  ( A -cn-> CC )  ->  F  =  ( x  e.  A  |->  ( F `  x
) ) )
4 eqidd 2166 . . . 4  |-  ( F  e.  ( A -cn-> CC )  ->  ( y  e.  CC  |->  -u y )  =  ( y  e.  CC  |->  -u y ) )
5 negeq 8091 . . . 4  |-  ( y  =  ( F `  x )  ->  -u y  =  -u ( F `  x ) )
62, 3, 4, 5fmptco 5651 . . 3  |-  ( F  e.  ( A -cn-> CC )  ->  ( (
y  e.  CC  |->  -u y )  o.  F
)  =  ( x  e.  A  |->  -u ( F `  x )
) )
7 negfcncf.1 . . 3  |-  G  =  ( x  e.  A  |-> 
-u ( F `  x ) )
86, 7eqtr4di 2217 . 2  |-  ( F  e.  ( A -cn-> CC )  ->  ( (
y  e.  CC  |->  -u y )  o.  F
)  =  G )
9 id 19 . . 3  |-  ( F  e.  ( A -cn-> CC )  ->  F  e.  ( A -cn-> CC ) )
10 ssid 3162 . . . 4  |-  CC  C_  CC
11 eqid 2165 . . . . 5  |-  ( y  e.  CC  |->  -u y
)  =  ( y  e.  CC  |->  -u y
)
1211negcncf 13228 . . . 4  |-  ( CC  C_  CC  ->  ( y  e.  CC  |->  -u y )  e.  ( CC -cn-> CC ) )
1310, 12mp1i 10 . . 3  |-  ( F  e.  ( A -cn-> CC )  ->  ( y  e.  CC  |->  -u y )  e.  ( CC -cn-> CC ) )
149, 13cncfco 13218 . 2  |-  ( F  e.  ( A -cn-> CC )  ->  ( (
y  e.  CC  |->  -u y )  o.  F
)  e.  ( A
-cn-> CC ) )
158, 14eqeltrrd 2244 1  |-  ( F  e.  ( A -cn-> CC )  ->  G  e.  ( A -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    C_ wss 3116    |-> cmpt 4043    o. ccom 4608   ` cfv 5188  (class class class)co 5842   CCcc 7751   -ucneg 8070   -cn->ccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-2 8916  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-cncf 13198
This theorem is referenced by:  ivthdec  13262
  Copyright terms: Public domain W3C validator