ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmulassap Unicode version

Theorem divmulassap 8838
Description: An associative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
Assertion
Ref Expression
divmulassap  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( A  x.  ( B  /  D ) )  x.  C )  =  ( ( A  x.  B
)  x.  ( C  /  D ) ) )

Proof of Theorem divmulassap
StepHypRef Expression
1 simpl1 1024 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  A  e.  CC )
2 simpl2 1025 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  B  e.  CC )
3 simpr 110 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( D  e.  CC  /\  D #  0 ) )
4 divassap 8833 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( D  e.  CC  /\  D #  0 ) )  -> 
( ( A  x.  B )  /  D
)  =  ( A  x.  ( B  /  D ) ) )
51, 2, 3, 4syl3anc 1271 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( A  x.  B )  /  D )  =  ( A  x.  ( B  /  D ) ) )
65eqcomd 2235 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( A  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  D ) )
76oveq1d 6015 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( A  x.  ( B  /  D ) )  x.  C )  =  ( ( ( A  x.  B )  /  D
)  x.  C ) )
8 mulcl 8122 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
983adant3 1041 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  B )  e.  CC )
109adantr 276 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( A  x.  B )  e.  CC )
11 simpl3 1026 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  C  e.  CC )
12 div32ap 8835 . . 3  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( D  e.  CC  /\  D #  0 )  /\  C  e.  CC )  ->  ( ( ( A  x.  B )  /  D )  x.  C
)  =  ( ( A  x.  B )  x.  ( C  /  D ) ) )
1310, 3, 11, 12syl3anc 1271 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( ( A  x.  B )  /  D )  x.  C )  =  ( ( A  x.  B
)  x.  ( C  /  D ) ) )
147, 13eqtrd 2262 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( A  x.  ( B  /  D ) )  x.  C )  =  ( ( A  x.  B
)  x.  ( C  /  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   0cc0 7995    x. cmul 8000   # cap 8724    / cdiv 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816
This theorem is referenced by:  divmulasscomap  8839
  Copyright terms: Public domain W3C validator