Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divmulasscomap | Unicode version |
Description: An associative/commutative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.) |
Ref | Expression |
---|---|
divmulasscomap | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divmulassap 8562 | . 2 # | |
2 | mulcom 7855 | . . . . 5 | |
3 | 2 | 3adant3 1002 | . . . 4 |
4 | 3 | adantr 274 | . . 3 # |
5 | 4 | oveq1d 5836 | . 2 # |
6 | simpl2 986 | . . . 4 # | |
7 | simpl1 985 | . . . 4 # | |
8 | simp3 984 | . . . . . . 7 | |
9 | 8 | anim1i 338 | . . . . . 6 # # |
10 | 3anass 967 | . . . . . 6 # # | |
11 | 9, 10 | sylibr 133 | . . . . 5 # # |
12 | divclap 8545 | . . . . 5 # | |
13 | 11, 12 | syl 14 | . . . 4 # |
14 | 6, 7, 13 | mulassd 7895 | . . 3 # |
15 | 8 | adantr 274 | . . . . . 6 # |
16 | simpr 109 | . . . . . 6 # # | |
17 | divassap 8557 | . . . . . 6 # | |
18 | 7, 15, 16, 17 | syl3anc 1220 | . . . . 5 # |
19 | 18 | eqcomd 2163 | . . . 4 # |
20 | 19 | oveq2d 5837 | . . 3 # |
21 | 14, 20 | eqtrd 2190 | . 2 # |
22 | 1, 5, 21 | 3eqtrd 2194 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 class class class wbr 3965 (class class class)co 5821 cc 7724 cc0 7726 cmul 7731 # cap 8450 cdiv 8539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-po 4256 df-iso 4257 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 |
This theorem is referenced by: cncongr2 11972 |
Copyright terms: Public domain | W3C validator |