ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdstrd Unicode version

Theorem dvdstrd 11976
Description: The divides relation is transitive, a deduction version of dvdstr 11974. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
dvdstrd.1  |-  ( ph  ->  K  e.  ZZ )
dvdstrd.2  |-  ( ph  ->  M  e.  ZZ )
dvdstrd.3  |-  ( ph  ->  N  e.  ZZ )
dvdstrd.4  |-  ( ph  ->  K  ||  M )
dvdstrd.5  |-  ( ph  ->  M  ||  N )
Assertion
Ref Expression
dvdstrd  |-  ( ph  ->  K  ||  N )

Proof of Theorem dvdstrd
StepHypRef Expression
1 dvdstrd.4 . 2  |-  ( ph  ->  K  ||  M )
2 dvdstrd.5 . 2  |-  ( ph  ->  M  ||  N )
3 dvdstrd.1 . . 3  |-  ( ph  ->  K  e.  ZZ )
4 dvdstrd.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
5 dvdstrd.3 . . 3  |-  ( ph  ->  N  e.  ZZ )
6 dvdstr 11974 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )
73, 4, 5, 6syl3anc 1249 . 2  |-  ( ph  ->  ( ( K  ||  M  /\  M  ||  N
)  ->  K  ||  N
) )
81, 2, 7mp2and 433 1  |-  ( ph  ->  K  ||  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   class class class wbr 4030   ZZcz 9320    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-dvds 11934
This theorem is referenced by:  isprm5lem  12282  pcpremul  12434  pcdvdstr  12468  pockthlem  12497  4sqlem8  12526  znunit  14158  lgsmod  15183  2sqlem3  15274  2sqlem8  15280
  Copyright terms: Public domain W3C validator