Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdstrd | GIF version |
Description: The divides relation is transitive, a deduction version of dvdstr 11794. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
dvdstrd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
dvdstrd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvdstrd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
dvdstrd.4 | ⊢ (𝜑 → 𝐾 ∥ 𝑀) |
dvdstrd.5 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
Ref | Expression |
---|---|
dvdstrd | ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdstrd.4 | . 2 ⊢ (𝜑 → 𝐾 ∥ 𝑀) | |
2 | dvdstrd.5 | . 2 ⊢ (𝜑 → 𝑀 ∥ 𝑁) | |
3 | dvdstrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
4 | dvdstrd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | dvdstrd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
6 | dvdstr 11794 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) | |
7 | 3, 4, 5, 6 | syl3anc 1234 | . 2 ⊢ (𝜑 → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) |
8 | 1, 2, 7 | mp2and 431 | 1 ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2142 class class class wbr 3990 ℤcz 9216 ∥ cdvds 11753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-mulrcl 7877 ax-addcom 7878 ax-mulcom 7879 ax-addass 7880 ax-mulass 7881 ax-distr 7882 ax-i2m1 7883 ax-1rid 7885 ax-0id 7886 ax-rnegex 7887 ax-cnre 7889 |
This theorem depends on definitions: df-bi 116 df-3or 975 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-reu 2456 df-rab 2458 df-v 2733 df-sbc 2957 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-br 3991 df-opab 4052 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-iota 5162 df-fun 5202 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-sub 8096 df-neg 8097 df-inn 8883 df-n0 9140 df-z 9217 df-dvds 11754 |
This theorem is referenced by: isprm5lem 12099 pcpremul 12251 pcdvdstr 12284 pockthlem 12312 4sqlem8 12341 lgsmod 13806 2sqlem3 13832 2sqlem8 13838 |
Copyright terms: Public domain | W3C validator |