ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdstrd GIF version

Theorem dvdstrd 11872
Description: The divides relation is transitive, a deduction version of dvdstr 11870. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
dvdstrd.1 (𝜑𝐾 ∈ ℤ)
dvdstrd.2 (𝜑𝑀 ∈ ℤ)
dvdstrd.3 (𝜑𝑁 ∈ ℤ)
dvdstrd.4 (𝜑𝐾𝑀)
dvdstrd.5 (𝜑𝑀𝑁)
Assertion
Ref Expression
dvdstrd (𝜑𝐾𝑁)

Proof of Theorem dvdstrd
StepHypRef Expression
1 dvdstrd.4 . 2 (𝜑𝐾𝑀)
2 dvdstrd.5 . 2 (𝜑𝑀𝑁)
3 dvdstrd.1 . . 3 (𝜑𝐾 ∈ ℤ)
4 dvdstrd.2 . . 3 (𝜑𝑀 ∈ ℤ)
5 dvdstrd.3 . . 3 (𝜑𝑁 ∈ ℤ)
6 dvdstr 11870 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
73, 4, 5, 6syl3anc 1249 . 2 (𝜑 → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
81, 2, 7mp2and 433 1 (𝜑𝐾𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2160   class class class wbr 4018  cz 9284  cdvds 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285  df-dvds 11830
This theorem is referenced by:  isprm5lem  12176  pcpremul  12328  pcdvdstr  12362  pockthlem  12391  4sqlem8  12420  lgsmod  14905  2sqlem3  14942  2sqlem8  14948
  Copyright terms: Public domain W3C validator