ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdstrd GIF version

Theorem dvdstrd 11796
Description: The divides relation is transitive, a deduction version of dvdstr 11794. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
dvdstrd.1 (𝜑𝐾 ∈ ℤ)
dvdstrd.2 (𝜑𝑀 ∈ ℤ)
dvdstrd.3 (𝜑𝑁 ∈ ℤ)
dvdstrd.4 (𝜑𝐾𝑀)
dvdstrd.5 (𝜑𝑀𝑁)
Assertion
Ref Expression
dvdstrd (𝜑𝐾𝑁)

Proof of Theorem dvdstrd
StepHypRef Expression
1 dvdstrd.4 . 2 (𝜑𝐾𝑀)
2 dvdstrd.5 . 2 (𝜑𝑀𝑁)
3 dvdstrd.1 . . 3 (𝜑𝐾 ∈ ℤ)
4 dvdstrd.2 . . 3 (𝜑𝑀 ∈ ℤ)
5 dvdstrd.3 . . 3 (𝜑𝑁 ∈ ℤ)
6 dvdstr 11794 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
73, 4, 5, 6syl3anc 1234 . 2 (𝜑 → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
81, 2, 7mp2and 431 1 (𝜑𝐾𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2142   class class class wbr 3990  cz 9216  cdvds 11753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-setind 4522  ax-cnex 7869  ax-resscn 7870  ax-1cn 7871  ax-1re 7872  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-mulrcl 7877  ax-addcom 7878  ax-mulcom 7879  ax-addass 7880  ax-mulass 7881  ax-distr 7882  ax-i2m1 7883  ax-1rid 7885  ax-0id 7886  ax-rnegex 7887  ax-cnre 7889
This theorem depends on definitions:  df-bi 116  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-ral 2454  df-rex 2455  df-reu 2456  df-rab 2458  df-v 2733  df-sbc 2957  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-br 3991  df-opab 4052  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-iota 5162  df-fun 5202  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-sub 8096  df-neg 8097  df-inn 8883  df-n0 9140  df-z 9217  df-dvds 11754
This theorem is referenced by:  isprm5lem  12099  pcpremul  12251  pcdvdstr  12284  pockthlem  12312  4sqlem8  12341  lgsmod  13806  2sqlem3  13832  2sqlem8  13838
  Copyright terms: Public domain W3C validator