![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdstrd | GIF version |
Description: The divides relation is transitive, a deduction version of dvdstr 11870. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
dvdstrd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
dvdstrd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvdstrd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
dvdstrd.4 | ⊢ (𝜑 → 𝐾 ∥ 𝑀) |
dvdstrd.5 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
Ref | Expression |
---|---|
dvdstrd | ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdstrd.4 | . 2 ⊢ (𝜑 → 𝐾 ∥ 𝑀) | |
2 | dvdstrd.5 | . 2 ⊢ (𝜑 → 𝑀 ∥ 𝑁) | |
3 | dvdstrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
4 | dvdstrd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | dvdstrd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
6 | dvdstr 11870 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) | |
7 | 3, 4, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) |
8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 class class class wbr 4018 ℤcz 9284 ∥ cdvds 11829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-cnre 7953 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-sub 8161 df-neg 8162 df-inn 8951 df-n0 9208 df-z 9285 df-dvds 11830 |
This theorem is referenced by: isprm5lem 12176 pcpremul 12328 pcdvdstr 12362 pockthlem 12391 4sqlem8 12420 lgsmod 14905 2sqlem3 14942 2sqlem8 14948 |
Copyright terms: Public domain | W3C validator |