| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdstrd | GIF version | ||
| Description: The divides relation is transitive, a deduction version of dvdstr 12139. (Contributed by metakunt, 12-May-2024.) |
| Ref | Expression |
|---|---|
| dvdstrd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| dvdstrd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| dvdstrd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| dvdstrd.4 | ⊢ (𝜑 → 𝐾 ∥ 𝑀) |
| dvdstrd.5 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
| Ref | Expression |
|---|---|
| dvdstrd | ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdstrd.4 | . 2 ⊢ (𝜑 → 𝐾 ∥ 𝑀) | |
| 2 | dvdstrd.5 | . 2 ⊢ (𝜑 → 𝑀 ∥ 𝑁) | |
| 3 | dvdstrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 4 | dvdstrd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | dvdstrd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 6 | dvdstr 12139 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1250 | . 2 ⊢ (𝜑 → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 class class class wbr 4044 ℤcz 9372 ∥ cdvds 12098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-dvds 12099 |
| This theorem is referenced by: bitsmod 12267 isprm5lem 12463 pcpremul 12616 pcdvdstr 12650 pockthlem 12679 4sqlem8 12708 znunit 14421 lgsmod 15503 2sqlem3 15594 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |