| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdstrd | GIF version | ||
| Description: The divides relation is transitive, a deduction version of dvdstr 12010. (Contributed by metakunt, 12-May-2024.) |
| Ref | Expression |
|---|---|
| dvdstrd.1 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| dvdstrd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| dvdstrd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| dvdstrd.4 | ⊢ (𝜑 → 𝐾 ∥ 𝑀) |
| dvdstrd.5 | ⊢ (𝜑 → 𝑀 ∥ 𝑁) |
| Ref | Expression |
|---|---|
| dvdstrd | ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdstrd.4 | . 2 ⊢ (𝜑 → 𝐾 ∥ 𝑀) | |
| 2 | dvdstrd.5 | . 2 ⊢ (𝜑 → 𝑀 ∥ 𝑁) | |
| 3 | dvdstrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 4 | dvdstrd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | dvdstrd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 6 | dvdstr 12010 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ℤcz 9343 ∥ cdvds 11969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-dvds 11970 |
| This theorem is referenced by: bitsmod 12138 isprm5lem 12334 pcpremul 12487 pcdvdstr 12521 pockthlem 12550 4sqlem8 12579 znunit 14291 lgsmod 15351 2sqlem3 15442 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |