| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | Unicode version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9121 |
. 2
| |
| 2 | 1 | nnzi 9467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-z 9447 |
| This theorem is referenced by: 1zzd 9473 znnnlt1 9494 nn0n0n1ge2b 9526 nn0lt2 9528 nn0le2is012 9529 3halfnz 9544 prime 9546 nnuz 9758 eluz2nn 9761 eluzge3nn 9767 1eluzge0 9769 2eluzge1 9771 eluz2b1 9796 uz2m1nn 9800 elnn1uz2 9802 elnndc 9807 nn01to3 9812 nnrecq 9840 fz1n 10240 fz10 10242 fz01en 10249 fzpreddisj 10267 fznatpl1 10272 fzprval 10278 fztpval 10279 fseq1p1m1 10290 elfzp1b 10293 elfzm1b 10294 4fvwrd4 10336 ige2m2fzo 10404 fzo12sn 10423 fzofzp1 10433 fzostep1 10443 rebtwn2zlemstep 10472 qbtwnxr 10477 flqge1nn 10514 fldiv4p1lem1div2 10525 fldiv4lem1div2 10527 modqfrac 10559 modqid0 10572 q1mod 10578 mulp1mod1 10587 m1modnnsub1 10592 modqm1p1mod0 10597 modqltm1p1mod 10598 frecfzennn 10648 frecfzen2 10649 zexpcl 10776 qexpcl 10777 qexpclz 10782 m1expcl 10784 expp1zap 10810 expm1ap 10811 bcn1 10980 bcpasc 10988 bcnm1 10994 isfinite4im 11014 hashsng 11020 hashfz 11043 climuni 11804 sum0 11899 sumsnf 11920 expcnv 12015 cvgratz 12043 prod0 12096 prodsnf 12103 sinltxirr 12272 sin01gt0 12273 p1modz1 12305 iddvds 12315 1dvds 12316 dvds1 12364 3dvds 12375 nn0o1gt2 12416 n2dvds1 12423 bitsp1o 12464 bitsfzo 12466 gcdadd 12506 gcdid 12507 gcd1 12508 1gcd 12513 bezoutlema 12520 bezoutlemb 12521 gcdmultiple 12541 lcmgcdlem 12599 lcm1 12603 3lcm2e6woprm 12608 isprm3 12640 prmgt1 12654 phicl2 12736 phibnd 12739 phi1 12741 dfphi2 12742 phimullem 12747 eulerthlemrprm 12751 eulerthlema 12752 eulerthlemth 12754 fermltl 12756 prmdiv 12757 prmdiveq 12758 odzcllem 12765 odzdvds 12768 oddprm 12782 pythagtriplem4 12791 pcpre1 12815 pc1 12828 pcrec 12831 pcmpt 12866 fldivp1 12871 expnprm 12876 pockthlem 12879 igz 12897 4sqlem12 12925 4sqlem13m 12926 4sqlem19 12932 ssnnctlemct 13017 mulgm1 13679 mulgp1 13692 mulgneg2 13693 zsubrg 14545 gzsubrg 14546 zringmulg 14562 mulgrhm2 14574 sin2pim 15487 cos2pim 15488 rpcxp1 15573 logbleb 15635 logblt 15636 lgslem2 15680 lgsfcl2 15685 lgsval2lem 15689 lgsmod 15705 lgsdir2lem1 15707 lgsdir2lem5 15711 lgsdir 15714 lgsne0 15717 1lgs 15722 lgsdinn0 15727 gausslemma2dlem0i 15736 gausslemma2d 15748 lgseisen 15753 lgsquad2lem2 15761 m1lgs 15764 2lgs 15783 2sqlem9 15803 2sqlem10 15804 ex-fl 16089 apdiff 16416 iswomni0 16419 nconstwlpolem0 16431 |
| Copyright terms: Public domain | W3C validator |