| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | Unicode version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9047 |
. 2
| |
| 2 | 1 | nnzi 9393 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-z 9373 |
| This theorem is referenced by: 1zzd 9399 znnnlt1 9420 nn0n0n1ge2b 9452 nn0lt2 9454 nn0le2is012 9455 3halfnz 9470 prime 9472 nnuz 9684 eluz2nn 9687 eluzge3nn 9693 1eluzge0 9695 2eluzge1 9697 eluz2b1 9722 uz2m1nn 9726 elnn1uz2 9728 elnndc 9733 nn01to3 9738 nnrecq 9766 fz1n 10166 fz10 10168 fz01en 10175 fzpreddisj 10193 fznatpl1 10198 fzprval 10204 fztpval 10205 fseq1p1m1 10216 elfzp1b 10219 elfzm1b 10220 4fvwrd4 10262 ige2m2fzo 10327 fzo12sn 10346 fzofzp1 10356 fzostep1 10366 rebtwn2zlemstep 10395 qbtwnxr 10400 flqge1nn 10437 fldiv4p1lem1div2 10448 fldiv4lem1div2 10450 modqfrac 10482 modqid0 10495 q1mod 10501 mulp1mod1 10510 m1modnnsub1 10515 modqm1p1mod0 10520 modqltm1p1mod 10521 frecfzennn 10571 frecfzen2 10572 zexpcl 10699 qexpcl 10700 qexpclz 10705 m1expcl 10707 expp1zap 10733 expm1ap 10734 bcn1 10903 bcpasc 10911 bcnm1 10917 isfinite4im 10937 hashsng 10943 hashfz 10966 climuni 11604 sum0 11699 sumsnf 11720 expcnv 11815 cvgratz 11843 prod0 11896 prodsnf 11903 sinltxirr 12072 sin01gt0 12073 p1modz1 12105 iddvds 12115 1dvds 12116 dvds1 12164 3dvds 12175 nn0o1gt2 12216 n2dvds1 12223 bitsp1o 12264 bitsfzo 12266 gcdadd 12306 gcdid 12307 gcd1 12308 1gcd 12313 bezoutlema 12320 bezoutlemb 12321 gcdmultiple 12341 lcmgcdlem 12399 lcm1 12403 3lcm2e6woprm 12408 isprm3 12440 prmgt1 12454 phicl2 12536 phibnd 12539 phi1 12541 dfphi2 12542 phimullem 12547 eulerthlemrprm 12551 eulerthlema 12552 eulerthlemth 12554 fermltl 12556 prmdiv 12557 prmdiveq 12558 odzcllem 12565 odzdvds 12568 oddprm 12582 pythagtriplem4 12591 pcpre1 12615 pc1 12628 pcrec 12631 pcmpt 12666 fldivp1 12671 expnprm 12676 pockthlem 12679 igz 12697 4sqlem12 12725 4sqlem13m 12726 4sqlem19 12732 ssnnctlemct 12817 mulgm1 13478 mulgp1 13491 mulgneg2 13492 zsubrg 14343 gzsubrg 14344 zringmulg 14360 mulgrhm2 14372 sin2pim 15285 cos2pim 15286 rpcxp1 15371 logbleb 15433 logblt 15434 lgslem2 15478 lgsfcl2 15483 lgsval2lem 15487 lgsmod 15503 lgsdir2lem1 15505 lgsdir2lem5 15509 lgsdir 15512 lgsne0 15515 1lgs 15520 lgsdinn0 15525 gausslemma2dlem0i 15534 gausslemma2d 15546 lgseisen 15551 lgsquad2lem2 15559 m1lgs 15562 2lgs 15581 2sqlem9 15601 2sqlem10 15602 ex-fl 15661 apdiff 15987 iswomni0 15990 nconstwlpolem0 16002 |
| Copyright terms: Public domain | W3C validator |