![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1z | Unicode version |
Description: One is an integer. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
1z |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8995 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnzi 9341 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-z 9321 |
This theorem is referenced by: 1zzd 9347 znnnlt1 9368 nn0n0n1ge2b 9399 nn0lt2 9401 nn0le2is012 9402 3halfnz 9417 prime 9419 nnuz 9631 eluz2nn 9634 eluzge3nn 9640 1eluzge0 9642 2eluzge1 9644 eluz2b1 9669 uz2m1nn 9673 elnn1uz2 9675 elnndc 9680 nn01to3 9685 nnrecq 9713 fz1n 10113 fz10 10115 fz01en 10122 fzpreddisj 10140 fznatpl1 10145 fzprval 10151 fztpval 10152 fseq1p1m1 10163 elfzp1b 10166 elfzm1b 10167 4fvwrd4 10209 ige2m2fzo 10268 fzo12sn 10287 fzofzp1 10297 fzostep1 10307 rebtwn2zlemstep 10324 qbtwnxr 10329 flqge1nn 10366 fldiv4p1lem1div2 10377 fldiv4lem1div2 10379 modqfrac 10411 modqid0 10424 q1mod 10430 mulp1mod1 10439 m1modnnsub1 10444 modqm1p1mod0 10449 modqltm1p1mod 10450 frecfzennn 10500 frecfzen2 10501 zexpcl 10628 qexpcl 10629 qexpclz 10634 m1expcl 10636 expp1zap 10662 expm1ap 10663 bcn1 10832 bcpasc 10840 bcnm1 10846 isfinite4im 10866 hashsng 10872 hashfz 10895 climuni 11439 sum0 11534 sumsnf 11555 expcnv 11650 cvgratz 11678 prod0 11731 prodsnf 11738 sinltxirr 11907 sin01gt0 11908 p1modz1 11940 iddvds 11950 1dvds 11951 dvds1 11998 nn0o1gt2 12049 n2dvds1 12056 gcdadd 12125 gcdid 12126 gcd1 12127 1gcd 12132 bezoutlema 12139 bezoutlemb 12140 gcdmultiple 12160 lcmgcdlem 12218 lcm1 12222 3lcm2e6woprm 12227 isprm3 12259 prmgt1 12273 phicl2 12355 phibnd 12358 phi1 12360 dfphi2 12361 phimullem 12366 eulerthlemrprm 12370 eulerthlema 12371 eulerthlemth 12373 fermltl 12375 prmdiv 12376 prmdiveq 12377 odzcllem 12383 odzdvds 12386 oddprm 12400 pythagtriplem4 12409 pcpre1 12433 pc1 12446 pcrec 12449 pcmpt 12484 fldivp1 12489 expnprm 12494 pockthlem 12497 igz 12515 4sqlem12 12543 4sqlem13m 12544 4sqlem19 12550 ssnnctlemct 12606 mulgm1 13215 mulgp1 13228 mulgneg2 13229 zsubrg 14080 gzsubrg 14081 zringmulg 14097 mulgrhm2 14109 sin2pim 14989 cos2pim 14990 rpcxp1 15075 logbleb 15134 logblt 15135 lgslem2 15158 lgsfcl2 15163 lgsval2lem 15167 lgsmod 15183 lgsdir2lem1 15185 lgsdir2lem5 15189 lgsdir 15192 lgsne0 15195 1lgs 15200 lgsdinn0 15205 gausslemma2dlem0i 15214 gausslemma2d 15226 lgseisen 15231 lgsquad2lem2 15239 m1lgs 15242 2lgs 15261 2sqlem9 15281 2sqlem10 15282 ex-fl 15287 apdiff 15608 iswomni0 15611 nconstwlpolem0 15623 |
Copyright terms: Public domain | W3C validator |