| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1z | Unicode version | ||
| Description: One is an integer. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| 1z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9082 |
. 2
| |
| 2 | 1 | nnzi 9428 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-z 9408 |
| This theorem is referenced by: 1zzd 9434 znnnlt1 9455 nn0n0n1ge2b 9487 nn0lt2 9489 nn0le2is012 9490 3halfnz 9505 prime 9507 nnuz 9719 eluz2nn 9722 eluzge3nn 9728 1eluzge0 9730 2eluzge1 9732 eluz2b1 9757 uz2m1nn 9761 elnn1uz2 9763 elnndc 9768 nn01to3 9773 nnrecq 9801 fz1n 10201 fz10 10203 fz01en 10210 fzpreddisj 10228 fznatpl1 10233 fzprval 10239 fztpval 10240 fseq1p1m1 10251 elfzp1b 10254 elfzm1b 10255 4fvwrd4 10297 ige2m2fzo 10364 fzo12sn 10383 fzofzp1 10393 fzostep1 10403 rebtwn2zlemstep 10432 qbtwnxr 10437 flqge1nn 10474 fldiv4p1lem1div2 10485 fldiv4lem1div2 10487 modqfrac 10519 modqid0 10532 q1mod 10538 mulp1mod1 10547 m1modnnsub1 10552 modqm1p1mod0 10557 modqltm1p1mod 10558 frecfzennn 10608 frecfzen2 10609 zexpcl 10736 qexpcl 10737 qexpclz 10742 m1expcl 10744 expp1zap 10770 expm1ap 10771 bcn1 10940 bcpasc 10948 bcnm1 10954 isfinite4im 10974 hashsng 10980 hashfz 11003 climuni 11719 sum0 11814 sumsnf 11835 expcnv 11930 cvgratz 11958 prod0 12011 prodsnf 12018 sinltxirr 12187 sin01gt0 12188 p1modz1 12220 iddvds 12230 1dvds 12231 dvds1 12279 3dvds 12290 nn0o1gt2 12331 n2dvds1 12338 bitsp1o 12379 bitsfzo 12381 gcdadd 12421 gcdid 12422 gcd1 12423 1gcd 12428 bezoutlema 12435 bezoutlemb 12436 gcdmultiple 12456 lcmgcdlem 12514 lcm1 12518 3lcm2e6woprm 12523 isprm3 12555 prmgt1 12569 phicl2 12651 phibnd 12654 phi1 12656 dfphi2 12657 phimullem 12662 eulerthlemrprm 12666 eulerthlema 12667 eulerthlemth 12669 fermltl 12671 prmdiv 12672 prmdiveq 12673 odzcllem 12680 odzdvds 12683 oddprm 12697 pythagtriplem4 12706 pcpre1 12730 pc1 12743 pcrec 12746 pcmpt 12781 fldivp1 12786 expnprm 12791 pockthlem 12794 igz 12812 4sqlem12 12840 4sqlem13m 12841 4sqlem19 12847 ssnnctlemct 12932 mulgm1 13593 mulgp1 13606 mulgneg2 13607 zsubrg 14458 gzsubrg 14459 zringmulg 14475 mulgrhm2 14487 sin2pim 15400 cos2pim 15401 rpcxp1 15486 logbleb 15548 logblt 15549 lgslem2 15593 lgsfcl2 15598 lgsval2lem 15602 lgsmod 15618 lgsdir2lem1 15620 lgsdir2lem5 15624 lgsdir 15627 lgsne0 15630 1lgs 15635 lgsdinn0 15640 gausslemma2dlem0i 15649 gausslemma2d 15661 lgseisen 15666 lgsquad2lem2 15674 m1lgs 15677 2lgs 15696 2sqlem9 15716 2sqlem10 15717 ex-fl 15861 apdiff 16189 iswomni0 16192 nconstwlpolem0 16204 |
| Copyright terms: Public domain | W3C validator |