ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem1 Unicode version

Theorem cauappcvgprlem1 7726
Description: Lemma for cauappcvgpr 7729. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlem.q  |-  ( ph  ->  Q  e.  Q. )
cauappcvgprlem.r  |-  ( ph  ->  R  e.  Q. )
Assertion
Ref Expression
cauappcvgprlem1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  Q
) } ,  {
u  |  ( F `
 Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, p, q, l, u    Q, p, q, l, u    R, p, q, l, u
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlem1
Dummy variables  f  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.r . . . . 5  |-  ( ph  ->  R  e.  Q. )
2 halfnqq 7477 . . . . 5  |-  ( R  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  R )
31, 2syl 14 . . . 4  |-  ( ph  ->  E. x  e.  Q.  ( x  +Q  x
)  =  R )
4 simprl 529 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  x  e.  Q. )
5 cauappcvgpr.app . . . . . . . . . . 11  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
65adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
7 cauappcvgprlem.q . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  Q. )
87adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  Q  e.  Q. )
9 fveq2 5558 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  ( F `  p )  =  ( F `  Q ) )
10 oveq1 5929 . . . . . . . . . . . . . . 15  |-  ( p  =  Q  ->  (
p  +Q  q )  =  ( Q  +Q  q ) )
1110oveq2d 5938 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  (
( F `  q
)  +Q  ( p  +Q  q ) )  =  ( ( F `
 q )  +Q  ( Q  +Q  q
) ) )
129, 11breq12d 4046 . . . . . . . . . . . . 13  |-  ( p  =  Q  ->  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  <->  ( F `  Q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  q ) ) ) )
139, 10oveq12d 5940 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  (
( F `  p
)  +Q  ( p  +Q  q ) )  =  ( ( F `
 Q )  +Q  ( Q  +Q  q
) ) )
1413breq2d 4045 . . . . . . . . . . . . 13  |-  ( p  =  Q  ->  (
( F `  q
)  <Q  ( ( F `
 p )  +Q  ( p  +Q  q
) )  <->  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) ) )
1512, 14anbi12d 473 . . . . . . . . . . . 12  |-  ( p  =  Q  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  <->  ( ( F `
 Q )  <Q 
( ( F `  q )  +Q  ( Q  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) ) ) )
16 fveq2 5558 . . . . . . . . . . . . . . 15  |-  ( q  =  x  ->  ( F `  q )  =  ( F `  x ) )
17 oveq2 5930 . . . . . . . . . . . . . . 15  |-  ( q  =  x  ->  ( Q  +Q  q )  =  ( Q  +Q  x
) )
1816, 17oveq12d 5940 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
( F `  q
)  +Q  ( Q  +Q  q ) )  =  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
1918breq2d 4045 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
( F `  Q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  q
) )  <->  ( F `  Q )  <Q  (
( F `  x
)  +Q  ( Q  +Q  x ) ) ) )
2017oveq2d 5938 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
( F `  Q
)  +Q  ( Q  +Q  q ) )  =  ( ( F `
 Q )  +Q  ( Q  +Q  x
) ) )
2116, 20breq12d 4046 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
( F `  q
)  <Q  ( ( F `
 Q )  +Q  ( Q  +Q  q
) )  <->  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) )
2219, 21anbi12d 473 . . . . . . . . . . . 12  |-  ( q  =  x  ->  (
( ( F `  Q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) )  <->  ( ( F `
 Q )  <Q 
( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
2315, 22rspc2v 2881 . . . . . . . . . . 11  |-  ( ( Q  e.  Q.  /\  x  e.  Q. )  ->  ( A. p  e. 
Q.  A. q  e.  Q.  ( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  ->  ( ( F `  Q )  <Q  ( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
248, 4, 23syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( A. p  e. 
Q.  A. q  e.  Q.  ( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  ->  ( ( F `  Q )  <Q  ( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
256, 24mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  <Q  (
( F `  x
)  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) )
2625simpld 112 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
27 cauappcvgpr.f . . . . . . . . . . 11  |-  ( ph  ->  F : Q. --> Q. )
2827adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  F : Q. --> Q. )
2928, 4ffvelcdmd 5698 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  x
)  e.  Q. )
30 addassnqg 7449 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q.  /\  x  e.  Q. )  ->  (
( ( F `  x )  +Q  Q
)  +Q  x )  =  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
3129, 8, 4, 30syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  x
)  =  ( ( F `  x )  +Q  ( Q  +Q  x ) ) )
3226, 31breqtrrd 4061 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  <Q  ( ( ( F `  x )  +Q  Q )  +Q  x ) )
33 ltanqg 7467 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3433adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  +Q  x
)  =  R ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e. 
Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
3527, 7ffvelcdmd 5698 . . . . . . . . 9  |-  ( ph  ->  ( F `  Q
)  e.  Q. )
3635adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  e.  Q. )
37 addclnq 7442 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q. )  ->  ( ( F `  x )  +Q  Q
)  e.  Q. )
3829, 8, 37syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  x )  +Q  Q
)  e.  Q. )
39 addclnq 7442 . . . . . . . . 9  |-  ( ( ( ( F `  x )  +Q  Q
)  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( F `
 x )  +Q  Q )  +Q  x
)  e.  Q. )
4038, 4, 39syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  x
)  e.  Q. )
41 addcomnqg 7448 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4241adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  +Q  x
)  =  R ) )  /\  ( f  e.  Q.  /\  g  e.  Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
4334, 36, 40, 4, 42caovord2d 6093 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  <Q  (
( ( F `  x )  +Q  Q
)  +Q  x )  <-> 
( ( F `  Q )  +Q  x
)  <Q  ( ( ( ( F `  x
)  +Q  Q )  +Q  x )  +Q  x ) ) )
4432, 43mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  +Q  x
)  <Q  ( ( ( ( F `  x
)  +Q  Q )  +Q  x )  +Q  x ) )
45 addassnqg 7449 . . . . . . . 8  |-  ( ( ( ( F `  x )  +Q  Q
)  e.  Q.  /\  x  e.  Q.  /\  x  e.  Q. )  ->  (
( ( ( F `
 x )  +Q  Q )  +Q  x
)  +Q  x )  =  ( ( ( F `  x )  +Q  Q )  +Q  ( x  +Q  x
) ) )
4638, 4, 4, 45syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( ( F `  x )  +Q  Q )  +Q  x )  +Q  x
)  =  ( ( ( F `  x
)  +Q  Q )  +Q  ( x  +Q  x ) ) )
47 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( x  +Q  x
)  =  R )
4847oveq2d 5938 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  (
x  +Q  x ) )  =  ( ( ( F `  x
)  +Q  Q )  +Q  R ) )
491adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  R  e.  Q. )
50 addassnqg 7449 . . . . . . . 8  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q.  /\  R  e.  Q. )  ->  (
( ( F `  x )  +Q  Q
)  +Q  R )  =  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
5129, 8, 49, 50syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  R
)  =  ( ( F `  x )  +Q  ( Q  +Q  R ) ) )
5246, 48, 513eqtrd 2233 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( ( F `  x )  +Q  Q )  +Q  x )  +Q  x
)  =  ( ( F `  x )  +Q  ( Q  +Q  R ) ) )
5344, 52breqtrd 4059 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  +Q  x
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
54 oveq2 5930 . . . . . . 7  |-  ( q  =  x  ->  (
( F `  Q
)  +Q  q )  =  ( ( F `
 Q )  +Q  x ) )
5516oveq1d 5937 . . . . . . 7  |-  ( q  =  x  ->  (
( F `  q
)  +Q  ( Q  +Q  R ) )  =  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
5654, 55breq12d 4046 . . . . . 6  |-  ( q  =  x  ->  (
( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  ( ( F `  Q )  +Q  x )  <Q  (
( F `  x
)  +Q  ( Q  +Q  R ) ) ) )
5756rspcev 2868 . . . . 5  |-  ( ( x  e.  Q.  /\  ( ( F `  Q )  +Q  x
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
584, 53, 57syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
593, 58rexlimddv 2619 . . 3  |-  ( ph  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
60 cauappcvgpr.bnd . . . . . . . 8  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
61 cauappcvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
62 addclnq 7442 . . . . . . . . 9  |-  ( ( Q  e.  Q.  /\  R  e.  Q. )  ->  ( Q  +Q  R
)  e.  Q. )
637, 1, 62syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( Q  +Q  R
)  e.  Q. )
6427, 5, 60, 61, 63cauappcvgprlemladd 7725 . . . . . . 7  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
6564fveq2d 5562 . . . . . 6  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
)
66 nqex 7430 . . . . . . . 8  |-  Q.  e.  _V
6766rabex 4177 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  ( Q  +Q  R ) ) }  e.  _V
6866rabex 4177 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  ( Q  +Q  R
) )  <Q  u }  e.  _V
6967, 68op1st 6204 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  ( Q  +Q  R
) )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) }
7065, 69eqtrdi 2245 . . . . 5  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  =  { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } )
7170eleq2d 2266 . . . 4  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  ( F `  Q )  e.  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ) )
72 oveq1 5929 . . . . . . . 8  |-  ( l  =  ( F `  Q )  ->  (
l  +Q  q )  =  ( ( F `
 Q )  +Q  q ) )
7372breq1d 4043 . . . . . . 7  |-  ( l  =  ( F `  Q )  ->  (
( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  ( ( F `  Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7473rexbidv 2498 . . . . . 6  |-  ( l  =  ( F `  Q )  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7574elrab3 2921 . . . . 5  |-  ( ( F `  Q )  e.  Q.  ->  (
( F `  Q
)  e.  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  ( Q  +Q  R ) ) }  <->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) ) )
7635, 75syl 14 . . . 4  |-  ( ph  ->  ( ( F `  Q )  e.  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) }  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7771, 76bitrd 188 . . 3  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7859, 77mpbird 167 . 2  |-  ( ph  ->  ( F `  Q
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
7927, 5, 60, 61cauappcvgprlemcl 7720 . . . 4  |-  ( ph  ->  L  e.  P. )
80 nqprlu 7614 . . . . 5  |-  ( ( Q  +Q  R )  e.  Q.  ->  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R
)  <Q  u } >.  e. 
P. )
8163, 80syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >.  e.  P. )
82 addclpr 7604 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  e.  P. )
8379, 81, 82syl2anc 411 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  e.  P. )
84 nqprl 7618 . . 3  |-  ( ( ( F `  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R
)  <Q  u } >. )  e.  P. )  -> 
( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  Q ) } ,  { u  |  ( F `  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
8535, 83, 84syl2anc 411 . 2  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  Q ) } ,  { u  |  ( F `  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
8678, 85mpbid 147 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  Q
) } ,  {
u  |  ( F `
 Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   {crab 2479   <.cop 3625   class class class wbr 4033   -->wf 5254   ` cfv 5258  (class class class)co 5922   1stc1st 6196   Q.cnq 7347    +Q cplq 7349    <Q cltq 7352   P.cnp 7358    +P. cpp 7360    <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-iplp 7535  df-iltp 7537
This theorem is referenced by:  cauappcvgprlemlim  7728
  Copyright terms: Public domain W3C validator