ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem1 Unicode version

Theorem cauappcvgprlem1 7621
Description: Lemma for cauappcvgpr 7624. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlem.q  |-  ( ph  ->  Q  e.  Q. )
cauappcvgprlem.r  |-  ( ph  ->  R  e.  Q. )
Assertion
Ref Expression
cauappcvgprlem1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  Q
) } ,  {
u  |  ( F `
 Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, p, q, l, u    Q, p, q, l, u    R, p, q, l, u
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlem1
Dummy variables  f  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.r . . . . 5  |-  ( ph  ->  R  e.  Q. )
2 halfnqq 7372 . . . . 5  |-  ( R  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  R )
31, 2syl 14 . . . 4  |-  ( ph  ->  E. x  e.  Q.  ( x  +Q  x
)  =  R )
4 simprl 526 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  x  e.  Q. )
5 cauappcvgpr.app . . . . . . . . . . 11  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
65adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
7 cauappcvgprlem.q . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  Q. )
87adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  Q  e.  Q. )
9 fveq2 5496 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  ( F `  p )  =  ( F `  Q ) )
10 oveq1 5860 . . . . . . . . . . . . . . 15  |-  ( p  =  Q  ->  (
p  +Q  q )  =  ( Q  +Q  q ) )
1110oveq2d 5869 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  (
( F `  q
)  +Q  ( p  +Q  q ) )  =  ( ( F `
 q )  +Q  ( Q  +Q  q
) ) )
129, 11breq12d 4002 . . . . . . . . . . . . 13  |-  ( p  =  Q  ->  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  <->  ( F `  Q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  q ) ) ) )
139, 10oveq12d 5871 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  (
( F `  p
)  +Q  ( p  +Q  q ) )  =  ( ( F `
 Q )  +Q  ( Q  +Q  q
) ) )
1413breq2d 4001 . . . . . . . . . . . . 13  |-  ( p  =  Q  ->  (
( F `  q
)  <Q  ( ( F `
 p )  +Q  ( p  +Q  q
) )  <->  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) ) )
1512, 14anbi12d 470 . . . . . . . . . . . 12  |-  ( p  =  Q  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  <->  ( ( F `
 Q )  <Q 
( ( F `  q )  +Q  ( Q  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) ) ) )
16 fveq2 5496 . . . . . . . . . . . . . . 15  |-  ( q  =  x  ->  ( F `  q )  =  ( F `  x ) )
17 oveq2 5861 . . . . . . . . . . . . . . 15  |-  ( q  =  x  ->  ( Q  +Q  q )  =  ( Q  +Q  x
) )
1816, 17oveq12d 5871 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
( F `  q
)  +Q  ( Q  +Q  q ) )  =  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
1918breq2d 4001 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
( F `  Q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  q
) )  <->  ( F `  Q )  <Q  (
( F `  x
)  +Q  ( Q  +Q  x ) ) ) )
2017oveq2d 5869 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
( F `  Q
)  +Q  ( Q  +Q  q ) )  =  ( ( F `
 Q )  +Q  ( Q  +Q  x
) ) )
2116, 20breq12d 4002 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
( F `  q
)  <Q  ( ( F `
 Q )  +Q  ( Q  +Q  q
) )  <->  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) )
2219, 21anbi12d 470 . . . . . . . . . . . 12  |-  ( q  =  x  ->  (
( ( F `  Q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) )  <->  ( ( F `
 Q )  <Q 
( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
2315, 22rspc2v 2847 . . . . . . . . . . 11  |-  ( ( Q  e.  Q.  /\  x  e.  Q. )  ->  ( A. p  e. 
Q.  A. q  e.  Q.  ( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  ->  ( ( F `  Q )  <Q  ( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
248, 4, 23syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( A. p  e. 
Q.  A. q  e.  Q.  ( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  ->  ( ( F `  Q )  <Q  ( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
256, 24mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  <Q  (
( F `  x
)  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) )
2625simpld 111 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
27 cauappcvgpr.f . . . . . . . . . . 11  |-  ( ph  ->  F : Q. --> Q. )
2827adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  F : Q. --> Q. )
2928, 4ffvelrnd 5632 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  x
)  e.  Q. )
30 addassnqg 7344 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q.  /\  x  e.  Q. )  ->  (
( ( F `  x )  +Q  Q
)  +Q  x )  =  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
3129, 8, 4, 30syl3anc 1233 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  x
)  =  ( ( F `  x )  +Q  ( Q  +Q  x ) ) )
3226, 31breqtrrd 4017 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  <Q  ( ( ( F `  x )  +Q  Q )  +Q  x ) )
33 ltanqg 7362 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3433adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  +Q  x
)  =  R ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e. 
Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
3527, 7ffvelrnd 5632 . . . . . . . . 9  |-  ( ph  ->  ( F `  Q
)  e.  Q. )
3635adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  e.  Q. )
37 addclnq 7337 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q. )  ->  ( ( F `  x )  +Q  Q
)  e.  Q. )
3829, 8, 37syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  x )  +Q  Q
)  e.  Q. )
39 addclnq 7337 . . . . . . . . 9  |-  ( ( ( ( F `  x )  +Q  Q
)  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( F `
 x )  +Q  Q )  +Q  x
)  e.  Q. )
4038, 4, 39syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  x
)  e.  Q. )
41 addcomnqg 7343 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4241adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  +Q  x
)  =  R ) )  /\  ( f  e.  Q.  /\  g  e.  Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
4334, 36, 40, 4, 42caovord2d 6022 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  <Q  (
( ( F `  x )  +Q  Q
)  +Q  x )  <-> 
( ( F `  Q )  +Q  x
)  <Q  ( ( ( ( F `  x
)  +Q  Q )  +Q  x )  +Q  x ) ) )
4432, 43mpbid 146 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  +Q  x
)  <Q  ( ( ( ( F `  x
)  +Q  Q )  +Q  x )  +Q  x ) )
45 addassnqg 7344 . . . . . . . 8  |-  ( ( ( ( F `  x )  +Q  Q
)  e.  Q.  /\  x  e.  Q.  /\  x  e.  Q. )  ->  (
( ( ( F `
 x )  +Q  Q )  +Q  x
)  +Q  x )  =  ( ( ( F `  x )  +Q  Q )  +Q  ( x  +Q  x
) ) )
4638, 4, 4, 45syl3anc 1233 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( ( F `  x )  +Q  Q )  +Q  x )  +Q  x
)  =  ( ( ( F `  x
)  +Q  Q )  +Q  ( x  +Q  x ) ) )
47 simprr 527 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( x  +Q  x
)  =  R )
4847oveq2d 5869 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  (
x  +Q  x ) )  =  ( ( ( F `  x
)  +Q  Q )  +Q  R ) )
491adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  R  e.  Q. )
50 addassnqg 7344 . . . . . . . 8  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q.  /\  R  e.  Q. )  ->  (
( ( F `  x )  +Q  Q
)  +Q  R )  =  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
5129, 8, 49, 50syl3anc 1233 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  R
)  =  ( ( F `  x )  +Q  ( Q  +Q  R ) ) )
5246, 48, 513eqtrd 2207 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( ( F `  x )  +Q  Q )  +Q  x )  +Q  x
)  =  ( ( F `  x )  +Q  ( Q  +Q  R ) ) )
5344, 52breqtrd 4015 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  +Q  x
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
54 oveq2 5861 . . . . . . 7  |-  ( q  =  x  ->  (
( F `  Q
)  +Q  q )  =  ( ( F `
 Q )  +Q  x ) )
5516oveq1d 5868 . . . . . . 7  |-  ( q  =  x  ->  (
( F `  q
)  +Q  ( Q  +Q  R ) )  =  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
5654, 55breq12d 4002 . . . . . 6  |-  ( q  =  x  ->  (
( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  ( ( F `  Q )  +Q  x )  <Q  (
( F `  x
)  +Q  ( Q  +Q  R ) ) ) )
5756rspcev 2834 . . . . 5  |-  ( ( x  e.  Q.  /\  ( ( F `  Q )  +Q  x
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
584, 53, 57syl2anc 409 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
593, 58rexlimddv 2592 . . 3  |-  ( ph  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
60 cauappcvgpr.bnd . . . . . . . 8  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
61 cauappcvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
62 addclnq 7337 . . . . . . . . 9  |-  ( ( Q  e.  Q.  /\  R  e.  Q. )  ->  ( Q  +Q  R
)  e.  Q. )
637, 1, 62syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( Q  +Q  R
)  e.  Q. )
6427, 5, 60, 61, 63cauappcvgprlemladd 7620 . . . . . . 7  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
6564fveq2d 5500 . . . . . 6  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
)
66 nqex 7325 . . . . . . . 8  |-  Q.  e.  _V
6766rabex 4133 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  ( Q  +Q  R ) ) }  e.  _V
6866rabex 4133 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  ( Q  +Q  R
) )  <Q  u }  e.  _V
6967, 68op1st 6125 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  ( Q  +Q  R
) )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) }
7065, 69eqtrdi 2219 . . . . 5  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  =  { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } )
7170eleq2d 2240 . . . 4  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  ( F `  Q )  e.  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ) )
72 oveq1 5860 . . . . . . . 8  |-  ( l  =  ( F `  Q )  ->  (
l  +Q  q )  =  ( ( F `
 Q )  +Q  q ) )
7372breq1d 3999 . . . . . . 7  |-  ( l  =  ( F `  Q )  ->  (
( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  ( ( F `  Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7473rexbidv 2471 . . . . . 6  |-  ( l  =  ( F `  Q )  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7574elrab3 2887 . . . . 5  |-  ( ( F `  Q )  e.  Q.  ->  (
( F `  Q
)  e.  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  ( Q  +Q  R ) ) }  <->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) ) )
7635, 75syl 14 . . . 4  |-  ( ph  ->  ( ( F `  Q )  e.  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) }  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7771, 76bitrd 187 . . 3  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7859, 77mpbird 166 . 2  |-  ( ph  ->  ( F `  Q
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
7927, 5, 60, 61cauappcvgprlemcl 7615 . . . 4  |-  ( ph  ->  L  e.  P. )
80 nqprlu 7509 . . . . 5  |-  ( ( Q  +Q  R )  e.  Q.  ->  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R
)  <Q  u } >.  e. 
P. )
8163, 80syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >.  e.  P. )
82 addclpr 7499 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  e.  P. )
8379, 81, 82syl2anc 409 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  e.  P. )
84 nqprl 7513 . . 3  |-  ( ( ( F `  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R
)  <Q  u } >. )  e.  P. )  -> 
( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  Q ) } ,  { u  |  ( F `  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
8535, 83, 84syl2anc 409 . 2  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  Q ) } ,  { u  |  ( F `  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
8678, 85mpbid 146 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  Q
) } ,  {
u  |  ( F `
 Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   {crab 2452   <.cop 3586   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   1stc1st 6117   Q.cnq 7242    +Q cplq 7244    <Q cltq 7247   P.cnp 7253    +P. cpp 7255    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432
This theorem is referenced by:  cauappcvgprlemlim  7623
  Copyright terms: Public domain W3C validator