ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem1 Unicode version

Theorem cauappcvgprlem1 7580
Description: Lemma for cauappcvgpr 7583. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlem.q  |-  ( ph  ->  Q  e.  Q. )
cauappcvgprlem.r  |-  ( ph  ->  R  e.  Q. )
Assertion
Ref Expression
cauappcvgprlem1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  Q
) } ,  {
u  |  ( F `
 Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, p, q, l, u    Q, p, q, l, u    R, p, q, l, u
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlem1
Dummy variables  f  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.r . . . . 5  |-  ( ph  ->  R  e.  Q. )
2 halfnqq 7331 . . . . 5  |-  ( R  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  R )
31, 2syl 14 . . . 4  |-  ( ph  ->  E. x  e.  Q.  ( x  +Q  x
)  =  R )
4 simprl 521 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  x  e.  Q. )
5 cauappcvgpr.app . . . . . . . . . . 11  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
65adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
7 cauappcvgprlem.q . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  Q. )
87adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  Q  e.  Q. )
9 fveq2 5469 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  ( F `  p )  =  ( F `  Q ) )
10 oveq1 5832 . . . . . . . . . . . . . . 15  |-  ( p  =  Q  ->  (
p  +Q  q )  =  ( Q  +Q  q ) )
1110oveq2d 5841 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  (
( F `  q
)  +Q  ( p  +Q  q ) )  =  ( ( F `
 q )  +Q  ( Q  +Q  q
) ) )
129, 11breq12d 3979 . . . . . . . . . . . . 13  |-  ( p  =  Q  ->  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  <->  ( F `  Q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  q ) ) ) )
139, 10oveq12d 5843 . . . . . . . . . . . . . 14  |-  ( p  =  Q  ->  (
( F `  p
)  +Q  ( p  +Q  q ) )  =  ( ( F `
 Q )  +Q  ( Q  +Q  q
) ) )
1413breq2d 3978 . . . . . . . . . . . . 13  |-  ( p  =  Q  ->  (
( F `  q
)  <Q  ( ( F `
 p )  +Q  ( p  +Q  q
) )  <->  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) ) )
1512, 14anbi12d 465 . . . . . . . . . . . 12  |-  ( p  =  Q  ->  (
( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  <->  ( ( F `
 Q )  <Q 
( ( F `  q )  +Q  ( Q  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) ) ) )
16 fveq2 5469 . . . . . . . . . . . . . . 15  |-  ( q  =  x  ->  ( F `  q )  =  ( F `  x ) )
17 oveq2 5833 . . . . . . . . . . . . . . 15  |-  ( q  =  x  ->  ( Q  +Q  q )  =  ( Q  +Q  x
) )
1816, 17oveq12d 5843 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
( F `  q
)  +Q  ( Q  +Q  q ) )  =  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
1918breq2d 3978 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
( F `  Q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  q
) )  <->  ( F `  Q )  <Q  (
( F `  x
)  +Q  ( Q  +Q  x ) ) ) )
2017oveq2d 5841 . . . . . . . . . . . . . 14  |-  ( q  =  x  ->  (
( F `  Q
)  +Q  ( Q  +Q  q ) )  =  ( ( F `
 Q )  +Q  ( Q  +Q  x
) ) )
2116, 20breq12d 3979 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  (
( F `  q
)  <Q  ( ( F `
 Q )  +Q  ( Q  +Q  q
) )  <->  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) )
2219, 21anbi12d 465 . . . . . . . . . . . 12  |-  ( q  =  x  ->  (
( ( F `  Q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  q ) ) )  <->  ( ( F `
 Q )  <Q 
( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
2315, 22rspc2v 2829 . . . . . . . . . . 11  |-  ( ( Q  e.  Q.  /\  x  e.  Q. )  ->  ( A. p  e. 
Q.  A. q  e.  Q.  ( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  ->  ( ( F `  Q )  <Q  ( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
248, 4, 23syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( A. p  e. 
Q.  A. q  e.  Q.  ( ( F `  p )  <Q  (
( F `  q
)  +Q  ( p  +Q  q ) )  /\  ( F `  q )  <Q  (
( F `  p
)  +Q  ( p  +Q  q ) ) )  ->  ( ( F `  Q )  <Q  ( ( F `  x )  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) ) )
256, 24mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  <Q  (
( F `  x
)  +Q  ( Q  +Q  x ) )  /\  ( F `  x )  <Q  (
( F `  Q
)  +Q  ( Q  +Q  x ) ) ) )
2625simpld 111 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
27 cauappcvgpr.f . . . . . . . . . . 11  |-  ( ph  ->  F : Q. --> Q. )
2827adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  F : Q. --> Q. )
2928, 4ffvelrnd 5604 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  x
)  e.  Q. )
30 addassnqg 7303 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q.  /\  x  e.  Q. )  ->  (
( ( F `  x )  +Q  Q
)  +Q  x )  =  ( ( F `
 x )  +Q  ( Q  +Q  x
) ) )
3129, 8, 4, 30syl3anc 1220 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  x
)  =  ( ( F `  x )  +Q  ( Q  +Q  x ) ) )
3226, 31breqtrrd 3993 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  <Q  ( ( ( F `  x )  +Q  Q )  +Q  x ) )
33 ltanqg 7321 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3433adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  +Q  x
)  =  R ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e. 
Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
3527, 7ffvelrnd 5604 . . . . . . . . 9  |-  ( ph  ->  ( F `  Q
)  e.  Q. )
3635adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( F `  Q
)  e.  Q. )
37 addclnq 7296 . . . . . . . . . 10  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q. )  ->  ( ( F `  x )  +Q  Q
)  e.  Q. )
3829, 8, 37syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  x )  +Q  Q
)  e.  Q. )
39 addclnq 7296 . . . . . . . . 9  |-  ( ( ( ( F `  x )  +Q  Q
)  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( F `
 x )  +Q  Q )  +Q  x
)  e.  Q. )
4038, 4, 39syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  x
)  e.  Q. )
41 addcomnqg 7302 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4241adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  ( x  +Q  x
)  =  R ) )  /\  ( f  e.  Q.  /\  g  e.  Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
4334, 36, 40, 4, 42caovord2d 5991 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  <Q  (
( ( F `  x )  +Q  Q
)  +Q  x )  <-> 
( ( F `  Q )  +Q  x
)  <Q  ( ( ( ( F `  x
)  +Q  Q )  +Q  x )  +Q  x ) ) )
4432, 43mpbid 146 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  +Q  x
)  <Q  ( ( ( ( F `  x
)  +Q  Q )  +Q  x )  +Q  x ) )
45 addassnqg 7303 . . . . . . . 8  |-  ( ( ( ( F `  x )  +Q  Q
)  e.  Q.  /\  x  e.  Q.  /\  x  e.  Q. )  ->  (
( ( ( F `
 x )  +Q  Q )  +Q  x
)  +Q  x )  =  ( ( ( F `  x )  +Q  Q )  +Q  ( x  +Q  x
) ) )
4638, 4, 4, 45syl3anc 1220 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( ( F `  x )  +Q  Q )  +Q  x )  +Q  x
)  =  ( ( ( F `  x
)  +Q  Q )  +Q  ( x  +Q  x ) ) )
47 simprr 522 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( x  +Q  x
)  =  R )
4847oveq2d 5841 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  (
x  +Q  x ) )  =  ( ( ( F `  x
)  +Q  Q )  +Q  R ) )
491adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  R  e.  Q. )
50 addassnqg 7303 . . . . . . . 8  |-  ( ( ( F `  x
)  e.  Q.  /\  Q  e.  Q.  /\  R  e.  Q. )  ->  (
( ( F `  x )  +Q  Q
)  +Q  R )  =  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
5129, 8, 49, 50syl3anc 1220 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( F `
 x )  +Q  Q )  +Q  R
)  =  ( ( F `  x )  +Q  ( Q  +Q  R ) ) )
5246, 48, 513eqtrd 2194 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( ( ( F `  x )  +Q  Q )  +Q  x )  +Q  x
)  =  ( ( F `  x )  +Q  ( Q  +Q  R ) ) )
5344, 52breqtrd 3991 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  -> 
( ( F `  Q )  +Q  x
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
54 oveq2 5833 . . . . . . 7  |-  ( q  =  x  ->  (
( F `  Q
)  +Q  q )  =  ( ( F `
 Q )  +Q  x ) )
5516oveq1d 5840 . . . . . . 7  |-  ( q  =  x  ->  (
( F `  q
)  +Q  ( Q  +Q  R ) )  =  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )
5654, 55breq12d 3979 . . . . . 6  |-  ( q  =  x  ->  (
( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  ( ( F `  Q )  +Q  x )  <Q  (
( F `  x
)  +Q  ( Q  +Q  R ) ) ) )
5756rspcev 2816 . . . . 5  |-  ( ( x  e.  Q.  /\  ( ( F `  Q )  +Q  x
)  <Q  ( ( F `
 x )  +Q  ( Q  +Q  R
) ) )  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
584, 53, 57syl2anc 409 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( x  +Q  x )  =  R ) )  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
593, 58rexlimddv 2579 . . 3  |-  ( ph  ->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) )
60 cauappcvgpr.bnd . . . . . . . 8  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
61 cauappcvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
62 addclnq 7296 . . . . . . . . 9  |-  ( ( Q  e.  Q.  /\  R  e.  Q. )  ->  ( Q  +Q  R
)  e.  Q. )
637, 1, 62syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( Q  +Q  R
)  e.  Q. )
6427, 5, 60, 61, 63cauappcvgprlemladd 7579 . . . . . . 7  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
6564fveq2d 5473 . . . . . 6  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
)
66 nqex 7284 . . . . . . . 8  |-  Q.  e.  _V
6766rabex 4109 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  ( Q  +Q  R ) ) }  e.  _V
6866rabex 4109 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  ( Q  +Q  R
) )  <Q  u }  e.  _V
6967, 68op1st 6095 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  ( Q  +Q  R
) )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) }
7065, 69eqtrdi 2206 . . . . 5  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  =  { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } )
7170eleq2d 2227 . . . 4  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  ( F `  Q )  e.  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) } ) )
72 oveq1 5832 . . . . . . . 8  |-  ( l  =  ( F `  Q )  ->  (
l  +Q  q )  =  ( ( F `
 Q )  +Q  q ) )
7372breq1d 3976 . . . . . . 7  |-  ( l  =  ( F `  Q )  ->  (
( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  ( ( F `  Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7473rexbidv 2458 . . . . . 6  |-  ( l  =  ( F `  Q )  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) )  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7574elrab3 2869 . . . . 5  |-  ( ( F `  Q )  e.  Q.  ->  (
( F `  Q
)  e.  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  ( Q  +Q  R ) ) }  <->  E. q  e.  Q.  ( ( F `  Q )  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) ) )
7635, 75syl 14 . . . 4  |-  ( ph  ->  ( ( F `  Q )  e.  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  ( Q  +Q  R
) ) }  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7771, 76bitrd 187 . . 3  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  E. q  e.  Q.  ( ( F `
 Q )  +Q  q )  <Q  (
( F `  q
)  +Q  ( Q  +Q  R ) ) ) )
7859, 77mpbird 166 . 2  |-  ( ph  ->  ( F `  Q
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
7927, 5, 60, 61cauappcvgprlemcl 7574 . . . 4  |-  ( ph  ->  L  e.  P. )
80 nqprlu 7468 . . . . 5  |-  ( ( Q  +Q  R )  e.  Q.  ->  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R
)  <Q  u } >.  e. 
P. )
8163, 80syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >.  e.  P. )
82 addclpr 7458 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  e.  P. )
8379, 81, 82syl2anc 409 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. )  e.  P. )
84 nqprl 7472 . . 3  |-  ( ( ( F `  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R
)  <Q  u } >. )  e.  P. )  -> 
( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  Q ) } ,  { u  |  ( F `  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
8535, 83, 84syl2anc 409 . 2  |-  ( ph  ->  ( ( F `  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( F `  Q ) } ,  { u  |  ( F `  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( Q  +Q  R
) } ,  {
u  |  ( Q  +Q  R )  <Q  u } >. ) ) )
8678, 85mpbid 146 1  |-  ( ph  -> 
<. { l  |  l 
<Q  ( F `  Q
) } ,  {
u  |  ( F `
 Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   {cab 2143   A.wral 2435   E.wrex 2436   {crab 2439   <.cop 3563   class class class wbr 3966   -->wf 5167   ` cfv 5171  (class class class)co 5825   1stc1st 6087   Q.cnq 7201    +Q cplq 7203    <Q cltq 7206   P.cnp 7212    +P. cpp 7214    <P cltp 7216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-eprel 4250  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-1o 6364  df-2o 6365  df-oadd 6368  df-omul 6369  df-er 6481  df-ec 6483  df-qs 6487  df-ni 7225  df-pli 7226  df-mi 7227  df-lti 7228  df-plpq 7265  df-mpq 7266  df-enq 7268  df-nqqs 7269  df-plqqs 7270  df-mqqs 7271  df-1nqqs 7272  df-rq 7273  df-ltnqqs 7274  df-enq0 7345  df-nq0 7346  df-0nq0 7347  df-plq0 7348  df-mq0 7349  df-inp 7387  df-iplp 7389  df-iltp 7391
This theorem is referenced by:  cauappcvgprlemlim  7582
  Copyright terms: Public domain W3C validator