ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslcm Unicode version

Theorem dvdslcm 12591
Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
dvdslcm  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )

Proof of Theorem dvdslcm
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 dvds0 12317 . . . . 5  |-  ( M  e.  ZZ  ->  M  ||  0 )
21ad2antrr 488 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  0 )
3 oveq1 6008 . . . . . . 7  |-  ( M  =  0  ->  ( M lcm  N )  =  ( 0 lcm  N ) )
4 0z 9457 . . . . . . . . 9  |-  0  e.  ZZ
5 lcmcom 12586 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N lcm  0 )  =  ( 0 lcm  N
) )
64, 5mpan2 425 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  ( 0 lcm  N ) )
7 lcm0val 12587 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
86, 7eqtr3d 2264 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
93, 8sylan9eqr 2284 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  N
)  =  0 )
109adantll 476 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  0 )
11 oveq2 6009 . . . . . . 7  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
12 lcm0val 12587 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
1311, 12sylan9eqr 2284 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( M lcm  N
)  =  0 )
1413adantlr 477 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  0 )
1510, 14jaodan 802 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  =  0 )
162, 15breqtrrd 4111 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  ( M lcm  N
) )
17 dvds0 12317 . . . . 5  |-  ( N  e.  ZZ  ->  N  ||  0 )
1817ad2antlr 489 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  0 )
1918, 15breqtrrd 4111 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  ( M lcm  N
) )
2016, 19jca 306 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
21 lcmcllem 12589 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
22 lcmn0cl 12590 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  NN )
23 breq2 4087 . . . . . 6  |-  ( n  =  ( M lcm  N
)  ->  ( M  ||  n  <->  M  ||  ( M lcm 
N ) ) )
24 breq2 4087 . . . . . 6  |-  ( n  =  ( M lcm  N
)  ->  ( N  ||  n  <->  N  ||  ( M lcm 
N ) ) )
2523, 24anbi12d 473 . . . . 5  |-  ( n  =  ( M lcm  N
)  ->  ( ( M  ||  n  /\  N  ||  n )  <->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) ) )
2625elrab3 2960 . . . 4  |-  ( ( M lcm  N )  e.  NN  ->  ( ( M lcm  N )  e.  {
n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) }  <->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) ) )
2722, 26syl 14 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  e.  {
n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) }  <->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) ) )
2821, 27mpbid 147 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) )
29 lcmmndc 12584 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
30 exmiddc 841 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
3129, 30syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
3220, 28, 31mpjaodan 803 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   {crab 2512   class class class wbr 4083  (class class class)co 6001   0cc0 7999   NNcn 9110   ZZcz 9446    || cdvds 12298   lcm clcm 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-lcm 12583
This theorem is referenced by:  gcddvdslcm  12595  lcmneg  12596  lcmgcdeq  12605  lcmdvdsb  12606
  Copyright terms: Public domain W3C validator