ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslcm Unicode version

Theorem dvdslcm 11543
Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
dvdslcm  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )

Proof of Theorem dvdslcm
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 dvds0 11303 . . . . 5  |-  ( M  e.  ZZ  ->  M  ||  0 )
21ad2antrr 475 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  0 )
3 oveq1 5713 . . . . . . 7  |-  ( M  =  0  ->  ( M lcm  N )  =  ( 0 lcm  N ) )
4 0z 8917 . . . . . . . . 9  |-  0  e.  ZZ
5 lcmcom 11538 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N lcm  0 )  =  ( 0 lcm  N
) )
64, 5mpan2 419 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  ( 0 lcm  N ) )
7 lcm0val 11539 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
86, 7eqtr3d 2134 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
93, 8sylan9eqr 2154 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  N
)  =  0 )
109adantll 463 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  0 )
11 oveq2 5714 . . . . . . 7  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
12 lcm0val 11539 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
1311, 12sylan9eqr 2154 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( M lcm  N
)  =  0 )
1413adantlr 464 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  0 )
1510, 14jaodan 752 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  =  0 )
162, 15breqtrrd 3901 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  ( M lcm  N
) )
17 dvds0 11303 . . . . 5  |-  ( N  e.  ZZ  ->  N  ||  0 )
1817ad2antlr 476 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  0 )
1918, 15breqtrrd 3901 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  ( M lcm  N
) )
2016, 19jca 302 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
21 lcmcllem 11541 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
22 lcmn0cl 11542 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  NN )
23 breq2 3879 . . . . . 6  |-  ( n  =  ( M lcm  N
)  ->  ( M  ||  n  <->  M  ||  ( M lcm 
N ) ) )
24 breq2 3879 . . . . . 6  |-  ( n  =  ( M lcm  N
)  ->  ( N  ||  n  <->  N  ||  ( M lcm 
N ) ) )
2523, 24anbi12d 460 . . . . 5  |-  ( n  =  ( M lcm  N
)  ->  ( ( M  ||  n  /\  N  ||  n )  <->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) ) )
2625elrab3 2794 . . . 4  |-  ( ( M lcm  N )  e.  NN  ->  ( ( M lcm  N )  e.  {
n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) }  <->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) ) )
2722, 26syl 14 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M lcm 
N )  e.  {
n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) }  <->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) ) )
2821, 27mpbid 146 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm 
N ) ) )
29 lcmmndc 11536 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
30 exmiddc 788 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
3129, 30syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
3220, 28, 31mpjaodan 753 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M lcm  N )  /\  N  ||  ( M lcm  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670  DECID wdc 786    = wceq 1299    e. wcel 1448   {crab 2379   class class class wbr 3875  (class class class)co 5706   0cc0 7500   NNcn 8578   ZZcz 8906    || cdvds 11288   lcm clcm 11534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-sup 6786  df-inf 6787  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-fl 9884  df-mod 9937  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-dvds 11289  df-lcm 11535
This theorem is referenced by:  gcddvdslcm  11547  lcmneg  11548  lcmgcdeq  11557  lcmdvdsb  11558
  Copyright terms: Public domain W3C validator