Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3feq | Unicode version |
Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
Ref | Expression |
---|---|
seq3feq.1 | |
seq3feq.f | |
seq3feq.2 | |
seq3feq.pl |
Ref | Expression |
---|---|
seq3feq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . . 4 | |
2 | seq3feq.1 | . . . 4 | |
3 | seq3feq.f | . . . 4 | |
4 | seq3feq.pl | . . . 4 | |
5 | 1, 2, 3, 4 | seqf 10355 | . . 3 |
6 | 5 | ffnd 5319 | . 2 |
7 | fveq2 5467 | . . . . . . 7 | |
8 | fveq2 5467 | . . . . . . 7 | |
9 | 7, 8 | eqeq12d 2172 | . . . . . 6 |
10 | seq3feq.2 | . . . . . . . 8 | |
11 | 10 | ralrimiva 2530 | . . . . . . 7 |
12 | 11 | adantr 274 | . . . . . 6 |
13 | simpr 109 | . . . . . 6 | |
14 | 9, 12, 13 | rspcdva 2821 | . . . . 5 |
15 | 14, 3 | eqeltrrd 2235 | . . . 4 |
16 | 1, 2, 15, 4 | seqf 10355 | . . 3 |
17 | 16 | ffnd 5319 | . 2 |
18 | simpr 109 | . . 3 | |
19 | simpll 519 | . . . 4 | |
20 | elfzuz 9919 | . . . . 5 | |
21 | 20 | adantl 275 | . . . 4 |
22 | 19, 21, 10 | syl2anc 409 | . . 3 |
23 | 3 | adantlr 469 | . . 3 |
24 | 15 | adantlr 469 | . . 3 |
25 | 4 | adantlr 469 | . . 3 |
26 | 18, 22, 23, 24, 25 | seq3fveq 10365 | . 2 |
27 | 6, 17, 26 | eqfnfvd 5567 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 cfv 5169 (class class class)co 5821 cz 9162 cuz 9434 cfz 9907 cseq 10339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7818 ax-resscn 7819 ax-1cn 7820 ax-1re 7821 ax-icn 7822 ax-addcl 7823 ax-addrcl 7824 ax-mulcl 7825 ax-addcom 7827 ax-addass 7829 ax-distr 7831 ax-i2m1 7832 ax-0lt1 7833 ax-0id 7835 ax-rnegex 7836 ax-cnre 7838 ax-pre-ltirr 7839 ax-pre-ltwlin 7840 ax-pre-lttrn 7841 ax-pre-ltadd 7843 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-frec 6335 df-pnf 7909 df-mnf 7910 df-xr 7911 df-ltxr 7912 df-le 7913 df-sub 8043 df-neg 8044 df-inn 8829 df-n0 9086 df-z 9163 df-uz 9435 df-fz 9908 df-seqfrec 10340 |
This theorem is referenced by: zsumdc 11276 fsum3cvg2 11286 isumshft 11382 geolim2 11404 cvgratz 11424 mertenslem2 11428 zproddc 11471 |
Copyright terms: Public domain | W3C validator |