ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq Unicode version

Theorem seq3feq 10702
Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
Hypotheses
Ref Expression
seq3feq.1  |-  ( ph  ->  M  e.  ZZ )
seq3feq.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3feq.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( G `  k ) )
seq3feq.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3feq  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
Distinct variable groups:    .+ , k, x, y    k, F, x, y    k, G, x, y    k, M, x, y    S, k, x, y    ph, k, x, y

Proof of Theorem seq3feq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3feq.1 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seq3feq.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4 seq3feq.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
51, 2, 3, 4seqf 10686 . . 3  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
65ffnd 5474 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )
7 fveq2 5627 . . . . . . 7  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
8 fveq2 5627 . . . . . . 7  |-  ( k  =  x  ->  ( G `  k )  =  ( G `  x ) )
97, 8eqeq12d 2244 . . . . . 6  |-  ( k  =  x  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  x )  =  ( G `  x ) ) )
10 seq3feq.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( G `  k ) )
1110ralrimiva 2603 . . . . . . 7  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( G `  k ) )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  =  ( G `
 k ) )
13 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
149, 12, 13rspcdva 2912 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  =  ( G `  x ) )
1514, 3eqeltrrd 2307 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
161, 2, 15, 4seqf 10686 . . 3  |-  ( ph  ->  seq M (  .+  ,  G ) : (
ZZ>= `  M ) --> S )
1716ffnd 5474 . 2  |-  ( ph  ->  seq M (  .+  ,  G )  Fn  ( ZZ>=
`  M ) )
18 simpr 110 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
19 simpll 527 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  ph )
20 elfzuz 10217 . . . . 5  |-  ( k  e.  ( M ... z )  ->  k  e.  ( ZZ>= `  M )
)
2120adantl 277 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  k  e.  ( ZZ>= `  M )
)
2219, 21, 10syl2anc 411 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  ( F `  k )  =  ( G `  k ) )
233adantlr 477 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2415adantlr 477 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
254adantlr 477 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2618, 22, 23, 24, 25seq3fveq 10701 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  G ) `  z
) )
276, 17, 26eqfnfvd 5735 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5318  (class class class)co 6001   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-seqfrec 10670
This theorem is referenced by:  zsumdc  11895  fsum3cvg2  11905  isumshft  12001  geolim2  12023  cvgratz  12043  mertenslem2  12047  zproddc  12090
  Copyright terms: Public domain W3C validator