ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq Unicode version

Theorem seq3feq 10551
Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
Hypotheses
Ref Expression
seq3feq.1  |-  ( ph  ->  M  e.  ZZ )
seq3feq.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3feq.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( G `  k ) )
seq3feq.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3feq  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
Distinct variable groups:    .+ , k, x, y    k, F, x, y    k, G, x, y    k, M, x, y    S, k, x, y    ph, k, x, y

Proof of Theorem seq3feq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3feq.1 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seq3feq.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4 seq3feq.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
51, 2, 3, 4seqf 10535 . . 3  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
65ffnd 5404 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )
7 fveq2 5554 . . . . . . 7  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
8 fveq2 5554 . . . . . . 7  |-  ( k  =  x  ->  ( G `  k )  =  ( G `  x ) )
97, 8eqeq12d 2208 . . . . . 6  |-  ( k  =  x  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  x )  =  ( G `  x ) ) )
10 seq3feq.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( G `  k ) )
1110ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( G `  k ) )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  =  ( G `
 k ) )
13 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
149, 12, 13rspcdva 2869 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  =  ( G `  x ) )
1514, 3eqeltrrd 2271 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
161, 2, 15, 4seqf 10535 . . 3  |-  ( ph  ->  seq M (  .+  ,  G ) : (
ZZ>= `  M ) --> S )
1716ffnd 5404 . 2  |-  ( ph  ->  seq M (  .+  ,  G )  Fn  ( ZZ>=
`  M ) )
18 simpr 110 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
19 simpll 527 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  ph )
20 elfzuz 10087 . . . . 5  |-  ( k  e.  ( M ... z )  ->  k  e.  ( ZZ>= `  M )
)
2120adantl 277 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  k  e.  ( ZZ>= `  M )
)
2219, 21, 10syl2anc 411 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  ( F `  k )  =  ( G `  k ) )
233adantlr 477 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2415adantlr 477 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
254adantlr 477 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2618, 22, 23, 24, 25seq3fveq 10550 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  G ) `  z
) )
276, 17, 26eqfnfvd 5658 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5254  (class class class)co 5918   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519
This theorem is referenced by:  zsumdc  11527  fsum3cvg2  11537  isumshft  11633  geolim2  11655  cvgratz  11675  mertenslem2  11679  zproddc  11722
  Copyright terms: Public domain W3C validator