ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq Unicode version

Theorem seq3feq 10407
Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
Hypotheses
Ref Expression
seq3feq.1  |-  ( ph  ->  M  e.  ZZ )
seq3feq.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3feq.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( G `  k ) )
seq3feq.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3feq  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
Distinct variable groups:    .+ , k, x, y    k, F, x, y    k, G, x, y    k, M, x, y    S, k, x, y    ph, k, x, y

Proof of Theorem seq3feq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3feq.1 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seq3feq.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4 seq3feq.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
51, 2, 3, 4seqf 10396 . . 3  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
65ffnd 5338 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )
7 fveq2 5486 . . . . . . 7  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
8 fveq2 5486 . . . . . . 7  |-  ( k  =  x  ->  ( G `  k )  =  ( G `  x ) )
97, 8eqeq12d 2180 . . . . . 6  |-  ( k  =  x  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  x )  =  ( G `  x ) ) )
10 seq3feq.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( G `  k ) )
1110ralrimiva 2539 . . . . . . 7  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( G `  k ) )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M )
( F `  k
)  =  ( G `
 k ) )
13 simpr 109 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
149, 12, 13rspcdva 2835 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  =  ( G `  x ) )
1514, 3eqeltrrd 2244 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
161, 2, 15, 4seqf 10396 . . 3  |-  ( ph  ->  seq M (  .+  ,  G ) : (
ZZ>= `  M ) --> S )
1716ffnd 5338 . 2  |-  ( ph  ->  seq M (  .+  ,  G )  Fn  ( ZZ>=
`  M ) )
18 simpr 109 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
19 simpll 519 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  ph )
20 elfzuz 9956 . . . . 5  |-  ( k  e.  ( M ... z )  ->  k  e.  ( ZZ>= `  M )
)
2120adantl 275 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  k  e.  ( ZZ>= `  M )
)
2219, 21, 10syl2anc 409 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... z ) )  ->  ( F `  k )  =  ( G `  k ) )
233adantlr 469 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2415adantlr 469 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
254adantlr 469 . . 3  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2618, 22, 23, 24, 25seq3fveq 10406 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  G ) `  z
) )
276, 17, 26eqfnfvd 5586 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   ` cfv 5188  (class class class)co 5842   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-seqfrec 10381
This theorem is referenced by:  zsumdc  11325  fsum3cvg2  11335  isumshft  11431  geolim2  11453  cvgratz  11473  mertenslem2  11477  zproddc  11520
  Copyright terms: Public domain W3C validator