ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcvgfsum Unicode version

Theorem efcvgfsum 11813
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1  |-  F  =  ( n  e.  NN0  |->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
Assertion
Ref Expression
efcvgfsum  |-  ( A  e.  CC  ->  F  ~~>  ( exp `  A ) )
Distinct variable group:    k, n, A
Allowed substitution hints:    F( k, n)

Proof of Theorem efcvgfsum
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 0zd 9332 . . . . . . 7  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  -> 
0  e.  ZZ )
2 nn0z 9340 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  ZZ )
32adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  ->  n  e.  ZZ )
41, 3fzfigd 10505 . . . . . 6  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  -> 
( 0 ... n
)  e.  Fin )
5 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  A  e.  CC )
6 elfznn0 10183 . . . . . . . 8  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
76adantl 277 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  k  e.  NN0 )
8 eftcl 11800 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
95, 7, 8syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
104, 9fsumcl 11546 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  ->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )
1110ralrimiva 2567 . . . 4  |-  ( A  e.  CC  ->  A. n  e.  NN0  sum_ k  e.  ( 0 ... n ) ( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
12 efcvgfsum.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
1312fnmpt 5381 . . . 4  |-  ( A. n  e.  NN0  sum_ k  e.  ( 0 ... n
) ( ( A ^ k )  / 
( ! `  k
) )  e.  CC  ->  F  Fn  NN0 )
1411, 13syl 14 . . 3  |-  ( A  e.  CC  ->  F  Fn  NN0 )
15 nn0uz 9630 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
16 0zd 9332 . . . . 5  |-  ( A  e.  CC  ->  0  e.  ZZ )
17 eqid 2193 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
1817eftvalcn 11803 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
1918, 8eqeltrd 2270 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2015, 16, 19serf 10557 . . . 4  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) : NN0 --> CC )
2120ffnd 5405 . . 3  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  Fn 
NN0 )
22 simpr 110 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
23 0zd 9332 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
0  e.  ZZ )
2422nn0zd 9440 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ZZ )
2523, 24fzfigd 10505 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( 0 ... j
)  e.  Fin )
26 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  A  e.  CC )
27 elfznn0 10183 . . . . . . . 8  |-  ( k  e.  ( 0 ... j )  ->  k  e.  NN0 )
2827adantl 277 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  k  e.  NN0 )
2926, 28, 8syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
3025, 29fsumcl 11546 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )
31 oveq2 5927 . . . . . . 7  |-  ( n  =  j  ->  (
0 ... n )  =  ( 0 ... j
) )
3231sumeq1d 11512 . . . . . 6  |-  ( n  =  j  ->  sum_ k  e.  ( 0 ... n
) ( ( A ^ k )  / 
( ! `  k
) )  =  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
3332, 12fvmptg 5634 . . . . 5  |-  ( ( j  e.  NN0  /\  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )  -> 
( F `  j
)  =  sum_ k  e.  ( 0 ... j
) ( ( A ^ k )  / 
( ! `  k
) ) )
3422, 30, 33syl2anc 411 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  sum_ k  e.  ( 0 ... j
) ( ( A ^ k )  / 
( ! `  k
) ) )
35 simpll 527 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  A  e.  CC )
36 elnn0uz 9633 . . . . . . . 8  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
3736biimpri 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
3837adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  k  e.  NN0 )
3935, 38, 18syl2anc 411 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
4022, 15eleqtrdi 2286 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ( ZZ>= ` 
0 ) )
4135, 38, 8syl2anc 411 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
4239, 40, 41fsum3ser 11543 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  =  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j ) )
4334, 42eqtrd 2226 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  j ) )
4414, 21, 43eqfnfvd 5659 . 2  |-  ( A  e.  CC  ->  F  =  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) )
4517efcvg 11812 . 2  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  A ) )
4644, 45eqbrtrd 4052 1  |-  ( A  e.  CC  ->  F  ~~>  ( exp `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4030    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874    + caddc 7877    / cdiv 8693   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077    seqcseq 10521   ^cexp 10612   !cfa 10799    ~~> cli 11424   sum_csu 11499   expce 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator