ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcvgfsum Unicode version

Theorem efcvgfsum 11362
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1  |-  F  =  ( n  e.  NN0  |->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
Assertion
Ref Expression
efcvgfsum  |-  ( A  e.  CC  ->  F  ~~>  ( exp `  A ) )
Distinct variable group:    k, n, A
Allowed substitution hints:    F( k, n)

Proof of Theorem efcvgfsum
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 0zd 9059 . . . . . . 7  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  -> 
0  e.  ZZ )
2 nn0z 9067 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  ZZ )
32adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  ->  n  e.  ZZ )
41, 3fzfigd 10197 . . . . . 6  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  -> 
( 0 ... n
)  e.  Fin )
5 simpll 518 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  A  e.  CC )
6 elfznn0 9887 . . . . . . . 8  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
76adantl 275 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  k  e.  NN0 )
8 eftcl 11349 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
95, 7, 8syl2anc 408 . . . . . 6  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
104, 9fsumcl 11162 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  ->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )
1110ralrimiva 2503 . . . 4  |-  ( A  e.  CC  ->  A. n  e.  NN0  sum_ k  e.  ( 0 ... n ) ( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
12 efcvgfsum.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
1312fnmpt 5244 . . . 4  |-  ( A. n  e.  NN0  sum_ k  e.  ( 0 ... n
) ( ( A ^ k )  / 
( ! `  k
) )  e.  CC  ->  F  Fn  NN0 )
1411, 13syl 14 . . 3  |-  ( A  e.  CC  ->  F  Fn  NN0 )
15 nn0uz 9353 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
16 0zd 9059 . . . . 5  |-  ( A  e.  CC  ->  0  e.  ZZ )
17 eqid 2137 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
1817eftvalcn 11352 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
1918, 8eqeltrd 2214 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2015, 16, 19serf 10240 . . . 4  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) : NN0 --> CC )
2120ffnd 5268 . . 3  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  Fn 
NN0 )
22 simpr 109 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
23 0zd 9059 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
0  e.  ZZ )
2422nn0zd 9164 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ZZ )
2523, 24fzfigd 10197 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( 0 ... j
)  e.  Fin )
26 simpll 518 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  A  e.  CC )
27 elfznn0 9887 . . . . . . . 8  |-  ( k  e.  ( 0 ... j )  ->  k  e.  NN0 )
2827adantl 275 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  k  e.  NN0 )
2926, 28, 8syl2anc 408 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
3025, 29fsumcl 11162 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )
31 oveq2 5775 . . . . . . 7  |-  ( n  =  j  ->  (
0 ... n )  =  ( 0 ... j
) )
3231sumeq1d 11128 . . . . . 6  |-  ( n  =  j  ->  sum_ k  e.  ( 0 ... n
) ( ( A ^ k )  / 
( ! `  k
) )  =  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
3332, 12fvmptg 5490 . . . . 5  |-  ( ( j  e.  NN0  /\  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )  -> 
( F `  j
)  =  sum_ k  e.  ( 0 ... j
) ( ( A ^ k )  / 
( ! `  k
) ) )
3422, 30, 33syl2anc 408 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  sum_ k  e.  ( 0 ... j
) ( ( A ^ k )  / 
( ! `  k
) ) )
35 simpll 518 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  A  e.  CC )
36 elnn0uz 9356 . . . . . . . 8  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
3736biimpri 132 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
3837adantl 275 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  k  e.  NN0 )
3935, 38, 18syl2anc 408 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
4022, 15eleqtrdi 2230 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ( ZZ>= ` 
0 ) )
4135, 38, 8syl2anc 408 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
4239, 40, 41fsum3ser 11159 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  =  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j ) )
4334, 42eqtrd 2170 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  j ) )
4414, 21, 43eqfnfvd 5514 . 2  |-  ( A  e.  CC  ->  F  =  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) )
4517efcvg 11361 . 2  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  A ) )
4644, 45eqbrtrd 3945 1  |-  ( A  e.  CC  ->  F  ~~>  ( exp `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414   class class class wbr 3924    |-> cmpt 3984    Fn wfn 5113   ` cfv 5118  (class class class)co 5767   CCcc 7611   0cc0 7613    + caddc 7616    / cdiv 8425   NN0cn0 8970   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783    seqcseq 10211   ^cexp 10285   !cfa 10464    ~~> cli 11040   sum_csu 11115   expce 11337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-ico 9670  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-fac 10465  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116  df-ef 11343
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator