Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcvgfsum Unicode version

Theorem efcvgfsum 11380
 Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1
Assertion
Ref Expression
efcvgfsum
Distinct variable group:   ,,
Allowed substitution hints:   (,)

Proof of Theorem efcvgfsum
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 0zd 9073 . . . . . . 7
2 nn0z 9081 . . . . . . . 8
32adantl 275 . . . . . . 7
41, 3fzfigd 10211 . . . . . 6
5 simpll 518 . . . . . . 7
6 elfznn0 9901 . . . . . . . 8
76adantl 275 . . . . . . 7
8 eftcl 11367 . . . . . . 7
95, 7, 8syl2anc 408 . . . . . 6
104, 9fsumcl 11176 . . . . 5
1110ralrimiva 2505 . . . 4
12 efcvgfsum.1 . . . . 5
1312fnmpt 5249 . . . 4
1411, 13syl 14 . . 3
15 nn0uz 9367 . . . . 5
16 0zd 9073 . . . . 5
17 eqid 2139 . . . . . . 7
1817eftvalcn 11370 . . . . . 6
1918, 8eqeltrd 2216 . . . . 5
2015, 16, 19serf 10254 . . . 4
2120ffnd 5273 . . 3
22 simpr 109 . . . . 5
23 0zd 9073 . . . . . . 7
2422nn0zd 9178 . . . . . . 7
2523, 24fzfigd 10211 . . . . . 6
26 simpll 518 . . . . . . 7
27 elfznn0 9901 . . . . . . . 8
2827adantl 275 . . . . . . 7
2926, 28, 8syl2anc 408 . . . . . 6
3025, 29fsumcl 11176 . . . . 5
31 oveq2 5782 . . . . . . 7
3231sumeq1d 11142 . . . . . 6
3332, 12fvmptg 5497 . . . . 5
3422, 30, 33syl2anc 408 . . . 4
35 simpll 518 . . . . . 6
36 elnn0uz 9370 . . . . . . . 8
3736biimpri 132 . . . . . . 7
3837adantl 275 . . . . . 6
3935, 38, 18syl2anc 408 . . . . 5
4022, 15eleqtrdi 2232 . . . . 5
4135, 38, 8syl2anc 408 . . . . 5
4239, 40, 41fsum3ser 11173 . . . 4
4334, 42eqtrd 2172 . . 3
4414, 21, 43eqfnfvd 5521 . 2
4517efcvg 11379 . 2
4644, 45eqbrtrd 3950 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1331   wcel 1480  wral 2416   class class class wbr 3929   cmpt 3989   wfn 5118  cfv 5123  (class class class)co 5774  cc 7625  cc0 7627   caddc 7630   cdiv 8439  cn0 8984  cz 9061  cuz 9333  cfz 9797   cseq 10225  cexp 10299  cfa 10478   cli 11054  csu 11129  ce 11355 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-ico 9684  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-ihash 10529  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator