ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmcom Unicode version

Theorem nnmcom 6598
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( B  .o  A ) )

Proof of Theorem nnmcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5974 . . . . 5  |-  ( x  =  A  ->  (
x  .o  B )  =  ( A  .o  B ) )
2 oveq2 5975 . . . . 5  |-  ( x  =  A  ->  ( B  .o  x )  =  ( B  .o  A
) )
31, 2eqeq12d 2222 . . . 4  |-  ( x  =  A  ->  (
( x  .o  B
)  =  ( B  .o  x )  <->  ( A  .o  B )  =  ( B  .o  A ) ) )
43imbi2d 230 . . 3  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( x  .o  B
)  =  ( B  .o  x ) )  <-> 
( B  e.  om  ->  ( A  .o  B
)  =  ( B  .o  A ) ) ) )
5 oveq1 5974 . . . . 5  |-  ( x  =  (/)  ->  ( x  .o  B )  =  ( (/)  .o  B
) )
6 oveq2 5975 . . . . 5  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
75, 6eqeq12d 2222 . . . 4  |-  ( x  =  (/)  ->  ( ( x  .o  B )  =  ( B  .o  x )  <->  ( (/)  .o  B
)  =  ( B  .o  (/) ) ) )
8 oveq1 5974 . . . . 5  |-  ( x  =  y  ->  (
x  .o  B )  =  ( y  .o  B ) )
9 oveq2 5975 . . . . 5  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
108, 9eqeq12d 2222 . . . 4  |-  ( x  =  y  ->  (
( x  .o  B
)  =  ( B  .o  x )  <->  ( y  .o  B )  =  ( B  .o  y ) ) )
11 oveq1 5974 . . . . 5  |-  ( x  =  suc  y  -> 
( x  .o  B
)  =  ( suc  y  .o  B ) )
12 oveq2 5975 . . . . 5  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
1311, 12eqeq12d 2222 . . . 4  |-  ( x  =  suc  y  -> 
( ( x  .o  B )  =  ( B  .o  x )  <-> 
( suc  y  .o  B )  =  ( B  .o  suc  y
) ) )
14 nnm0r 6588 . . . . 5  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  (/) )
15 nnm0 6584 . . . . 5  |-  ( B  e.  om  ->  ( B  .o  (/) )  =  (/) )
1614, 15eqtr4d 2243 . . . 4  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  ( B  .o  (/) ) )
17 oveq1 5974 . . . . . 6  |-  ( ( y  .o  B )  =  ( B  .o  y )  ->  (
( y  .o  B
)  +o  B )  =  ( ( B  .o  y )  +o  B ) )
18 nnmsucr 6597 . . . . . . 7  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( suc  y  .o  B )  =  ( ( y  .o  B
)  +o  B ) )
19 nnmsuc 6586 . . . . . . . 8  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
2019ancoms 268 . . . . . . 7  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
2118, 20eqeq12d 2222 . . . . . 6  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( suc  y  .o  B )  =  ( B  .o  suc  y
)  <->  ( ( y  .o  B )  +o  B )  =  ( ( B  .o  y
)  +o  B ) ) )
2217, 21imbitrrid 156 . . . . 5  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( y  .o  B )  =  ( B  .o  y )  ->  ( suc  y  .o  B )  =  ( B  .o  suc  y
) ) )
2322ex 115 . . . 4  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( y  .o  B
)  =  ( B  .o  y )  -> 
( suc  y  .o  B )  =  ( B  .o  suc  y
) ) ) )
247, 10, 13, 16, 23finds2 4667 . . 3  |-  ( x  e.  om  ->  ( B  e.  om  ->  ( x  .o  B )  =  ( B  .o  x ) ) )
254, 24vtoclga 2844 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  .o  B )  =  ( B  .o  A ) ) )
2625imp 124 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( B  .o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   (/)c0 3468   suc csuc 4430   omcom 4656  (class class class)co 5967    +o coa 6522    .o comu 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-oadd 6529  df-omul 6530
This theorem is referenced by:  nndir  6599  nn2m  6636  mulcompig  7479  enq0sym  7580  enq0ref  7581  enq0tr  7582  addcmpblnq0  7591  mulcmpblnq0  7592  mulcanenq0ec  7593  nnanq0  7606  distrnq0  7607  mulcomnq0  7608  addassnq0  7610  nq02m  7613
  Copyright terms: Public domain W3C validator