Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmcom | Unicode version |
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnmcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5831 | . . . . 5 | |
2 | oveq2 5832 | . . . . 5 | |
3 | 1, 2 | eqeq12d 2172 | . . . 4 |
4 | 3 | imbi2d 229 | . . 3 |
5 | oveq1 5831 | . . . . 5 | |
6 | oveq2 5832 | . . . . 5 | |
7 | 5, 6 | eqeq12d 2172 | . . . 4 |
8 | oveq1 5831 | . . . . 5 | |
9 | oveq2 5832 | . . . . 5 | |
10 | 8, 9 | eqeq12d 2172 | . . . 4 |
11 | oveq1 5831 | . . . . 5 | |
12 | oveq2 5832 | . . . . 5 | |
13 | 11, 12 | eqeq12d 2172 | . . . 4 |
14 | nnm0r 6426 | . . . . 5 | |
15 | nnm0 6422 | . . . . 5 | |
16 | 14, 15 | eqtr4d 2193 | . . . 4 |
17 | oveq1 5831 | . . . . . 6 | |
18 | nnmsucr 6435 | . . . . . . 7 | |
19 | nnmsuc 6424 | . . . . . . . 8 | |
20 | 19 | ancoms 266 | . . . . . . 7 |
21 | 18, 20 | eqeq12d 2172 | . . . . . 6 |
22 | 17, 21 | syl5ibr 155 | . . . . 5 |
23 | 22 | ex 114 | . . . 4 |
24 | 7, 10, 13, 16, 23 | finds2 4560 | . . 3 |
25 | 4, 24 | vtoclga 2778 | . 2 |
26 | 25 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 c0 3394 csuc 4325 com 4549 (class class class)co 5824 coa 6360 comu 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-oadd 6367 df-omul 6368 |
This theorem is referenced by: nndir 6437 nn2m 6473 mulcompig 7251 enq0sym 7352 enq0ref 7353 enq0tr 7354 addcmpblnq0 7363 mulcmpblnq0 7364 mulcanenq0ec 7365 nnanq0 7378 distrnq0 7379 mulcomnq0 7380 addassnq0 7382 nq02m 7385 |
Copyright terms: Public domain | W3C validator |