| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmcom | Unicode version | ||
| Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnmcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6008 |
. . . . 5
| |
| 2 | oveq2 6009 |
. . . . 5
| |
| 3 | 1, 2 | eqeq12d 2244 |
. . . 4
|
| 4 | 3 | imbi2d 230 |
. . 3
|
| 5 | oveq1 6008 |
. . . . 5
| |
| 6 | oveq2 6009 |
. . . . 5
| |
| 7 | 5, 6 | eqeq12d 2244 |
. . . 4
|
| 8 | oveq1 6008 |
. . . . 5
| |
| 9 | oveq2 6009 |
. . . . 5
| |
| 10 | 8, 9 | eqeq12d 2244 |
. . . 4
|
| 11 | oveq1 6008 |
. . . . 5
| |
| 12 | oveq2 6009 |
. . . . 5
| |
| 13 | 11, 12 | eqeq12d 2244 |
. . . 4
|
| 14 | nnm0r 6625 |
. . . . 5
| |
| 15 | nnm0 6621 |
. . . . 5
| |
| 16 | 14, 15 | eqtr4d 2265 |
. . . 4
|
| 17 | oveq1 6008 |
. . . . . 6
| |
| 18 | nnmsucr 6634 |
. . . . . . 7
| |
| 19 | nnmsuc 6623 |
. . . . . . . 8
| |
| 20 | 19 | ancoms 268 |
. . . . . . 7
|
| 21 | 18, 20 | eqeq12d 2244 |
. . . . . 6
|
| 22 | 17, 21 | imbitrrid 156 |
. . . . 5
|
| 23 | 22 | ex 115 |
. . . 4
|
| 24 | 7, 10, 13, 16, 23 | finds2 4693 |
. . 3
|
| 25 | 4, 24 | vtoclga 2867 |
. 2
|
| 26 | 25 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-oadd 6566 df-omul 6567 |
| This theorem is referenced by: nndir 6636 nn2m 6673 mulcompig 7518 enq0sym 7619 enq0ref 7620 enq0tr 7621 addcmpblnq0 7630 mulcmpblnq0 7631 mulcanenq0ec 7632 nnanq0 7645 distrnq0 7646 mulcomnq0 7647 addassnq0 7649 nq02m 7652 |
| Copyright terms: Public domain | W3C validator |