| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmcom | Unicode version | ||
| Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnmcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5953 |
. . . . 5
| |
| 2 | oveq2 5954 |
. . . . 5
| |
| 3 | 1, 2 | eqeq12d 2220 |
. . . 4
|
| 4 | 3 | imbi2d 230 |
. . 3
|
| 5 | oveq1 5953 |
. . . . 5
| |
| 6 | oveq2 5954 |
. . . . 5
| |
| 7 | 5, 6 | eqeq12d 2220 |
. . . 4
|
| 8 | oveq1 5953 |
. . . . 5
| |
| 9 | oveq2 5954 |
. . . . 5
| |
| 10 | 8, 9 | eqeq12d 2220 |
. . . 4
|
| 11 | oveq1 5953 |
. . . . 5
| |
| 12 | oveq2 5954 |
. . . . 5
| |
| 13 | 11, 12 | eqeq12d 2220 |
. . . 4
|
| 14 | nnm0r 6567 |
. . . . 5
| |
| 15 | nnm0 6563 |
. . . . 5
| |
| 16 | 14, 15 | eqtr4d 2241 |
. . . 4
|
| 17 | oveq1 5953 |
. . . . . 6
| |
| 18 | nnmsucr 6576 |
. . . . . . 7
| |
| 19 | nnmsuc 6565 |
. . . . . . . 8
| |
| 20 | 19 | ancoms 268 |
. . . . . . 7
|
| 21 | 18, 20 | eqeq12d 2220 |
. . . . . 6
|
| 22 | 17, 21 | imbitrrid 156 |
. . . . 5
|
| 23 | 22 | ex 115 |
. . . 4
|
| 24 | 7, 10, 13, 16, 23 | finds2 4650 |
. . 3
|
| 25 | 4, 24 | vtoclga 2839 |
. 2
|
| 26 | 25 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-oadd 6508 df-omul 6509 |
| This theorem is referenced by: nndir 6578 nn2m 6615 mulcompig 7446 enq0sym 7547 enq0ref 7548 enq0tr 7549 addcmpblnq0 7558 mulcmpblnq0 7559 mulcanenq0ec 7560 nnanq0 7573 distrnq0 7574 mulcomnq0 7575 addassnq0 7577 nq02m 7580 |
| Copyright terms: Public domain | W3C validator |