ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmcom Unicode version

Theorem nnmcom 6556
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( B  .o  A ) )

Proof of Theorem nnmcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5932 . . . . 5  |-  ( x  =  A  ->  (
x  .o  B )  =  ( A  .o  B ) )
2 oveq2 5933 . . . . 5  |-  ( x  =  A  ->  ( B  .o  x )  =  ( B  .o  A
) )
31, 2eqeq12d 2211 . . . 4  |-  ( x  =  A  ->  (
( x  .o  B
)  =  ( B  .o  x )  <->  ( A  .o  B )  =  ( B  .o  A ) ) )
43imbi2d 230 . . 3  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( x  .o  B
)  =  ( B  .o  x ) )  <-> 
( B  e.  om  ->  ( A  .o  B
)  =  ( B  .o  A ) ) ) )
5 oveq1 5932 . . . . 5  |-  ( x  =  (/)  ->  ( x  .o  B )  =  ( (/)  .o  B
) )
6 oveq2 5933 . . . . 5  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
75, 6eqeq12d 2211 . . . 4  |-  ( x  =  (/)  ->  ( ( x  .o  B )  =  ( B  .o  x )  <->  ( (/)  .o  B
)  =  ( B  .o  (/) ) ) )
8 oveq1 5932 . . . . 5  |-  ( x  =  y  ->  (
x  .o  B )  =  ( y  .o  B ) )
9 oveq2 5933 . . . . 5  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
108, 9eqeq12d 2211 . . . 4  |-  ( x  =  y  ->  (
( x  .o  B
)  =  ( B  .o  x )  <->  ( y  .o  B )  =  ( B  .o  y ) ) )
11 oveq1 5932 . . . . 5  |-  ( x  =  suc  y  -> 
( x  .o  B
)  =  ( suc  y  .o  B ) )
12 oveq2 5933 . . . . 5  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
1311, 12eqeq12d 2211 . . . 4  |-  ( x  =  suc  y  -> 
( ( x  .o  B )  =  ( B  .o  x )  <-> 
( suc  y  .o  B )  =  ( B  .o  suc  y
) ) )
14 nnm0r 6546 . . . . 5  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  (/) )
15 nnm0 6542 . . . . 5  |-  ( B  e.  om  ->  ( B  .o  (/) )  =  (/) )
1614, 15eqtr4d 2232 . . . 4  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  ( B  .o  (/) ) )
17 oveq1 5932 . . . . . 6  |-  ( ( y  .o  B )  =  ( B  .o  y )  ->  (
( y  .o  B
)  +o  B )  =  ( ( B  .o  y )  +o  B ) )
18 nnmsucr 6555 . . . . . . 7  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( suc  y  .o  B )  =  ( ( y  .o  B
)  +o  B ) )
19 nnmsuc 6544 . . . . . . . 8  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
2019ancoms 268 . . . . . . 7  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
2118, 20eqeq12d 2211 . . . . . 6  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( suc  y  .o  B )  =  ( B  .o  suc  y
)  <->  ( ( y  .o  B )  +o  B )  =  ( ( B  .o  y
)  +o  B ) ) )
2217, 21imbitrrid 156 . . . . 5  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( y  .o  B )  =  ( B  .o  y )  ->  ( suc  y  .o  B )  =  ( B  .o  suc  y
) ) )
2322ex 115 . . . 4  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( y  .o  B
)  =  ( B  .o  y )  -> 
( suc  y  .o  B )  =  ( B  .o  suc  y
) ) ) )
247, 10, 13, 16, 23finds2 4638 . . 3  |-  ( x  e.  om  ->  ( B  e.  om  ->  ( x  .o  B )  =  ( B  .o  x ) ) )
254, 24vtoclga 2830 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  .o  B )  =  ( B  .o  A ) ) )
2625imp 124 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( B  .o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   (/)c0 3451   suc csuc 4401   omcom 4627  (class class class)co 5925    +o coa 6480    .o comu 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488
This theorem is referenced by:  nndir  6557  nn2m  6594  mulcompig  7415  enq0sym  7516  enq0ref  7517  enq0tr  7518  addcmpblnq0  7527  mulcmpblnq0  7528  mulcanenq0ec  7529  nnanq0  7542  distrnq0  7543  mulcomnq0  7544  addassnq0  7546  nq02m  7549
  Copyright terms: Public domain W3C validator