ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosplitsn Unicode version

Theorem fzosplitsn 10236
Description: Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzosplitsn  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  { B }
) )

Proof of Theorem fzosplitsn
StepHypRef Expression
1 id 19 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ( ZZ>= `  A )
)
2 eluzelz 9540 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
3 uzid 9545 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  ( ZZ>= `  B )
)
4 peano2uz 9586 . . . . 5  |-  ( B  e.  ( ZZ>= `  B
)  ->  ( B  +  1 )  e.  ( ZZ>= `  B )
)
52, 3, 43syl 17 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  1 )  e.  ( ZZ>= `  B )
)
6 elfzuzb 10022 . . . 4  |-  ( B  e.  ( A ... ( B  +  1
) )  <->  ( B  e.  ( ZZ>= `  A )  /\  ( B  +  1 )  e.  ( ZZ>= `  B ) ) )
71, 5, 6sylanbrc 417 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ( A ... ( B  +  1 ) ) )
8 fzosplit 10180 . . 3  |-  ( B  e.  ( A ... ( B  +  1
) )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ B )  u.  ( B..^ ( B  +  1 ) ) ) )
97, 8syl 14 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  ( B..^ ( B  +  1 ) ) ) )
10 fzosn 10208 . . . 4  |-  ( B  e.  ZZ  ->  ( B..^ ( B  +  1 ) )  =  { B } )
112, 10syl 14 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B..^ ( B  +  1
) )  =  { B } )
1211uneq2d 3291 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A..^ B )  u.  ( B..^ ( B  +  1 ) ) )  =  ( ( A..^ B
)  u.  { B } ) )
139, 12eqtrd 2210 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148    u. cun 3129   {csn 3594   ` cfv 5218  (class class class)co 5878   1c1 7815    + caddc 7817   ZZcz 9256   ZZ>=cuz 9531   ...cfz 10011  ..^cfzo 10145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012  df-fzo 10146
This theorem is referenced by:  fzosplitprm1  10237  fzosplitsni  10238  fzisfzounsn  10239
  Copyright terms: Public domain W3C validator