ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmima Unicode version

Theorem ghmima 13229
Description: The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmima  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  S )
)  ->  ( F " U )  e.  (SubGrp `  T ) )

Proof of Theorem ghmima
StepHypRef Expression
1 df-ima 4660 . 2  |-  ( F
" U )  =  ran  ( F  |`  U )
2 eqid 2189 . . . 4  |-  ( Ss  U )  =  ( Ss  U )
32resghm 13224 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  S )
)  ->  ( F  |`  U )  e.  ( ( Ss  U )  GrpHom  T ) )
4 ghmrn 13221 . . 3  |-  ( ( F  |`  U )  e.  ( ( Ss  U ) 
GrpHom  T )  ->  ran  ( F  |`  U )  e.  (SubGrp `  T
) )
53, 4syl 14 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  S )
)  ->  ran  ( F  |`  U )  e.  (SubGrp `  T ) )
61, 5eqeltrid 2276 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  S )
)  ->  ( F " U )  e.  (SubGrp `  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   ran crn 4648    |` cres 4649   "cima 4650   ` cfv 5238  (class class class)co 5900   ↾s cress 12524  SubGrpcsubg 13131    GrpHom cghm 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-minusg 12972  df-subg 13134  df-ghm 13205
This theorem is referenced by:  ghmnsgima  13232  conjsubg  13241
  Copyright terms: Public domain W3C validator