| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmnsgima | Unicode version | ||
| Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| ghmnsgima.1 |
|
| Ref | Expression |
|---|---|
| ghmnsgima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . 3
| |
| 2 | nsgsubg 13742 |
. . . 4
| |
| 3 | 2 | 3ad2ant2 1043 |
. . 3
|
| 4 | ghmima 13802 |
. . 3
| |
| 5 | 1, 3, 4 | syl2anc 411 |
. 2
|
| 6 | 1 | adantr 276 |
. . . . . . 7
|
| 7 | ghmgrp1 13782 |
. . . . . . . . 9
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
|
| 9 | simprl 529 |
. . . . . . . 8
| |
| 10 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 11 | 10 | subgss 13711 |
. . . . . . . . . . 11
|
| 12 | 3, 11 | syl 14 |
. . . . . . . . . 10
|
| 13 | 12 | adantr 276 |
. . . . . . . . 9
|
| 14 | simprr 531 |
. . . . . . . . 9
| |
| 15 | 13, 14 | sseldd 3225 |
. . . . . . . 8
|
| 16 | eqid 2229 |
. . . . . . . . 9
| |
| 17 | 10, 16 | grpcl 13541 |
. . . . . . . 8
|
| 18 | 8, 9, 15, 17 | syl3anc 1271 |
. . . . . . 7
|
| 19 | eqid 2229 |
. . . . . . . 8
| |
| 20 | eqid 2229 |
. . . . . . . 8
| |
| 21 | 10, 19, 20 | ghmsub 13788 |
. . . . . . 7
|
| 22 | 6, 18, 9, 21 | syl3anc 1271 |
. . . . . 6
|
| 23 | eqid 2229 |
. . . . . . . . 9
| |
| 24 | 10, 16, 23 | ghmlin 13785 |
. . . . . . . 8
|
| 25 | 6, 9, 15, 24 | syl3anc 1271 |
. . . . . . 7
|
| 26 | 25 | oveq1d 6016 |
. . . . . 6
|
| 27 | 22, 26 | eqtrd 2262 |
. . . . 5
|
| 28 | ghmnsgima.1 |
. . . . . . . . . 10
| |
| 29 | 10, 28 | ghmf 13784 |
. . . . . . . . 9
|
| 30 | 1, 29 | syl 14 |
. . . . . . . 8
|
| 31 | 30 | adantr 276 |
. . . . . . 7
|
| 32 | 31 | ffnd 5474 |
. . . . . 6
|
| 33 | simpl2 1025 |
. . . . . . 7
| |
| 34 | 10, 16, 19 | nsgconj 13743 |
. . . . . . 7
|
| 35 | 33, 9, 14, 34 | syl3anc 1271 |
. . . . . 6
|
| 36 | fnfvima 5874 |
. . . . . 6
| |
| 37 | 32, 13, 35, 36 | syl3anc 1271 |
. . . . 5
|
| 38 | 27, 37 | eqeltrrd 2307 |
. . . 4
|
| 39 | 38 | ralrimivva 2612 |
. . 3
|
| 40 | 30 | ffnd 5474 |
. . . . 5
|
| 41 | oveq1 6008 |
. . . . . . . . 9
| |
| 42 | id 19 |
. . . . . . . . 9
| |
| 43 | 41, 42 | oveq12d 6019 |
. . . . . . . 8
|
| 44 | 43 | eleq1d 2298 |
. . . . . . 7
|
| 45 | 44 | ralbidv 2530 |
. . . . . 6
|
| 46 | 45 | ralrn 5773 |
. . . . 5
|
| 47 | 40, 46 | syl 14 |
. . . 4
|
| 48 | simp3 1023 |
. . . . 5
| |
| 49 | 48 | raleqdv 2734 |
. . . 4
|
| 50 | oveq2 6009 |
. . . . . . . . 9
| |
| 51 | 50 | oveq1d 6016 |
. . . . . . . 8
|
| 52 | 51 | eleq1d 2298 |
. . . . . . 7
|
| 53 | 52 | ralima 5879 |
. . . . . 6
|
| 54 | 40, 12, 53 | syl2anc 411 |
. . . . 5
|
| 55 | 54 | ralbidv 2530 |
. . . 4
|
| 56 | 47, 49, 55 | 3bitr3d 218 |
. . 3
|
| 57 | 39, 56 | mpbird 167 |
. 2
|
| 58 | 28, 23, 20 | isnsg3 13744 |
. 2
|
| 59 | 5, 57, 58 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-sbg 13538 df-subg 13707 df-nsg 13708 df-ghm 13778 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |