ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjsubg Unicode version

Theorem conjsubg 13728
Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
Assertion
Ref Expression
conjsubg  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G
) )
Distinct variable groups:    x,  .-    x,  .+    x, A    x, G    x, S    x, X
Allowed substitution hint:    F( x)

Proof of Theorem conjsubg
StepHypRef Expression
1 conjghm.x . . . . 5  |-  X  =  ( Base `  G
)
21subgss 13625 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
32adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  C_  X )
4 df-ima 4706 . . . 4  |-  ( ( x  e.  X  |->  ( ( A  .+  x
)  .-  A )
) " S )  =  ran  ( ( x  e.  X  |->  ( ( A  .+  x
)  .-  A )
)  |`  S )
5 resmpt 5026 . . . . . 6  |-  ( S 
C_  X  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  ( x  e.  S  |->  ( ( A 
.+  x )  .-  A ) ) )
6 conjsubg.f . . . . . 6  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
75, 6eqtr4di 2258 . . . . 5  |-  ( S 
C_  X  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  F )
87rneqd 4926 . . . 4  |-  ( S 
C_  X  ->  ran  ( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  |`  S )  =  ran  F )
94, 8eqtrid 2252 . . 3  |-  ( S 
C_  X  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) " S
)  =  ran  F
)
103, 9syl 14 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) " S
)  =  ran  F
)
11 subgrcl 13630 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
12 conjghm.p . . . . . 6  |-  .+  =  ( +g  `  G )
13 conjghm.m . . . . . 6  |-  .-  =  ( -g `  G )
14 eqid 2207 . . . . . 6  |-  ( x  e.  X  |->  ( ( A  .+  x ) 
.-  A ) )  =  ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )
151, 12, 13, 14conjghm 13727 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  e.  ( G  GrpHom  G )  /\  ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) ) : X -1-1-onto-> X ) )
1611, 15sylan 283 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  e.  ( G  GrpHom  G )  /\  ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) : X -1-1-onto-> X
) )
1716simpld 112 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
x  e.  X  |->  ( ( A  .+  x
)  .-  A )
)  e.  ( G 
GrpHom  G ) )
18 simpl 109 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  e.  (SubGrp `  G )
)
19 ghmima 13716 . . 3  |-  ( ( ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  e.  ( G  GrpHom  G )  /\  S  e.  (SubGrp `  G
) )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) " S
)  e.  (SubGrp `  G ) )
2017, 18, 19syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) " S
)  e.  (SubGrp `  G ) )
2110, 20eqeltrrd 2285 1  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174    |-> cmpt 4121   ran crn 4694    |` cres 4695   "cima 4696   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447   -gcsg 13449  SubGrpcsubg 13618    GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-subg 13621  df-ghm 13692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator