ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjsubg Unicode version

Theorem conjsubg 13584
Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
Assertion
Ref Expression
conjsubg  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G
) )
Distinct variable groups:    x,  .-    x,  .+    x, A    x, G    x, S    x, X
Allowed substitution hint:    F( x)

Proof of Theorem conjsubg
StepHypRef Expression
1 conjghm.x . . . . 5  |-  X  =  ( Base `  G
)
21subgss 13481 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
32adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  C_  X )
4 df-ima 4687 . . . 4  |-  ( ( x  e.  X  |->  ( ( A  .+  x
)  .-  A )
) " S )  =  ran  ( ( x  e.  X  |->  ( ( A  .+  x
)  .-  A )
)  |`  S )
5 resmpt 5006 . . . . . 6  |-  ( S 
C_  X  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  ( x  e.  S  |->  ( ( A 
.+  x )  .-  A ) ) )
6 conjsubg.f . . . . . 6  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
75, 6eqtr4di 2255 . . . . 5  |-  ( S 
C_  X  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  F )
87rneqd 4906 . . . 4  |-  ( S 
C_  X  ->  ran  ( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  |`  S )  =  ran  F )
94, 8eqtrid 2249 . . 3  |-  ( S 
C_  X  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) " S
)  =  ran  F
)
103, 9syl 14 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) " S
)  =  ran  F
)
11 subgrcl 13486 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
12 conjghm.p . . . . . 6  |-  .+  =  ( +g  `  G )
13 conjghm.m . . . . . 6  |-  .-  =  ( -g `  G )
14 eqid 2204 . . . . . 6  |-  ( x  e.  X  |->  ( ( A  .+  x ) 
.-  A ) )  =  ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )
151, 12, 13, 14conjghm 13583 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  e.  ( G  GrpHom  G )  /\  ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) ) : X -1-1-onto-> X ) )
1611, 15sylan 283 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  e.  ( G  GrpHom  G )  /\  ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) : X -1-1-onto-> X
) )
1716simpld 112 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
x  e.  X  |->  ( ( A  .+  x
)  .-  A )
)  e.  ( G 
GrpHom  G ) )
18 simpl 109 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  e.  (SubGrp `  G )
)
19 ghmima 13572 . . 3  |-  ( ( ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  e.  ( G  GrpHom  G )  /\  S  e.  (SubGrp `  G
) )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) " S
)  e.  (SubGrp `  G ) )
2017, 18, 19syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) " S
)  e.  (SubGrp `  G ) )
2110, 20eqeltrrd 2282 1  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175    C_ wss 3165    |-> cmpt 4104   ran crn 4675    |` cres 4676   "cima 4677   -1-1-onto->wf1o 5269   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   Grpcgrp 13303   -gcsg 13305  SubGrpcsubg 13474    GrpHom cghm 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-sbg 13308  df-subg 13477  df-ghm 13548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator