| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domneq0 | Unicode version | ||
| Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domneq0.b |
|
| domneq0.t |
|
| domneq0.z |
|
| Ref | Expression |
|---|---|
| domneq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 998 |
. . 3
| |
| 2 | domneq0.b |
. . . . . 6
| |
| 3 | domneq0.t |
. . . . . 6
| |
| 4 | domneq0.z |
. . . . . 6
| |
| 5 | 2, 3, 4 | isdomn 13835 |
. . . . 5
|
| 6 | 5 | simprbi 275 |
. . . 4
|
| 7 | 6 | 3ad2ant1 1020 |
. . 3
|
| 8 | oveq1 5930 |
. . . . . 6
| |
| 9 | 8 | eqeq1d 2205 |
. . . . 5
|
| 10 | eqeq1 2203 |
. . . . . 6
| |
| 11 | 10 | orbi1d 792 |
. . . . 5
|
| 12 | 9, 11 | imbi12d 234 |
. . . 4
|
| 13 | oveq2 5931 |
. . . . . 6
| |
| 14 | 13 | eqeq1d 2205 |
. . . . 5
|
| 15 | eqeq1 2203 |
. . . . . 6
| |
| 16 | 15 | orbi2d 791 |
. . . . 5
|
| 17 | 14, 16 | imbi12d 234 |
. . . 4
|
| 18 | 12, 17 | rspc2va 2882 |
. . 3
|
| 19 | 1, 7, 18 | syl2anc 411 |
. 2
|
| 20 | domnring 13837 |
. . . . . 6
| |
| 21 | 20 | 3ad2ant1 1020 |
. . . . 5
|
| 22 | simp3 1001 |
. . . . 5
| |
| 23 | 2, 3, 4 | ringlz 13609 |
. . . . 5
|
| 24 | 21, 22, 23 | syl2anc 411 |
. . . 4
|
| 25 | oveq1 5930 |
. . . . 5
| |
| 26 | 25 | eqeq1d 2205 |
. . . 4
|
| 27 | 24, 26 | syl5ibrcom 157 |
. . 3
|
| 28 | simp2 1000 |
. . . . 5
| |
| 29 | 2, 3, 4 | ringrz 13610 |
. . . . 5
|
| 30 | 21, 28, 29 | syl2anc 411 |
. . . 4
|
| 31 | oveq2 5931 |
. . . . 5
| |
| 32 | 31 | eqeq1d 2205 |
. . . 4
|
| 33 | 30, 32 | syl5ibrcom 157 |
. . 3
|
| 34 | 27, 33 | jaod 718 |
. 2
|
| 35 | 19, 34 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-inn 8993 df-2 9051 df-3 9052 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-plusg 12778 df-mulr 12779 df-0g 12939 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-grp 13145 df-minusg 13146 df-mgp 13487 df-ring 13564 df-nzr 13746 df-domn 13825 |
| This theorem is referenced by: domnmuln0 13839 znidomb 14224 |
| Copyright terms: Public domain | W3C validator |