| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domneq0 | Unicode version | ||
| Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| domneq0.b |
|
| domneq0.t |
|
| domneq0.z |
|
| Ref | Expression |
|---|---|
| domneq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 999 |
. . 3
| |
| 2 | domneq0.b |
. . . . . 6
| |
| 3 | domneq0.t |
. . . . . 6
| |
| 4 | domneq0.z |
. . . . . 6
| |
| 5 | 2, 3, 4 | isdomn 14101 |
. . . . 5
|
| 6 | 5 | simprbi 275 |
. . . 4
|
| 7 | 6 | 3ad2ant1 1021 |
. . 3
|
| 8 | oveq1 5963 |
. . . . . 6
| |
| 9 | 8 | eqeq1d 2215 |
. . . . 5
|
| 10 | eqeq1 2213 |
. . . . . 6
| |
| 11 | 10 | orbi1d 793 |
. . . . 5
|
| 12 | 9, 11 | imbi12d 234 |
. . . 4
|
| 13 | oveq2 5964 |
. . . . . 6
| |
| 14 | 13 | eqeq1d 2215 |
. . . . 5
|
| 15 | eqeq1 2213 |
. . . . . 6
| |
| 16 | 15 | orbi2d 792 |
. . . . 5
|
| 17 | 14, 16 | imbi12d 234 |
. . . 4
|
| 18 | 12, 17 | rspc2va 2895 |
. . 3
|
| 19 | 1, 7, 18 | syl2anc 411 |
. 2
|
| 20 | domnring 14103 |
. . . . . 6
| |
| 21 | 20 | 3ad2ant1 1021 |
. . . . 5
|
| 22 | simp3 1002 |
. . . . 5
| |
| 23 | 2, 3, 4 | ringlz 13875 |
. . . . 5
|
| 24 | 21, 22, 23 | syl2anc 411 |
. . . 4
|
| 25 | oveq1 5963 |
. . . . 5
| |
| 26 | 25 | eqeq1d 2215 |
. . . 4
|
| 27 | 24, 26 | syl5ibrcom 157 |
. . 3
|
| 28 | simp2 1001 |
. . . . 5
| |
| 29 | 2, 3, 4 | ringrz 13876 |
. . . . 5
|
| 30 | 21, 28, 29 | syl2anc 411 |
. . . 4
|
| 31 | oveq2 5964 |
. . . . 5
| |
| 32 | 31 | eqeq1d 2215 |
. . . 4
|
| 33 | 30, 32 | syl5ibrcom 157 |
. . 3
|
| 34 | 27, 33 | jaod 719 |
. 2
|
| 35 | 19, 34 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-grp 13405 df-minusg 13406 df-mgp 13753 df-ring 13830 df-nzr 14012 df-domn 14091 |
| This theorem is referenced by: domnmuln0 14105 znidomb 14490 |
| Copyright terms: Public domain | W3C validator |