ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domneq0 Unicode version

Theorem domneq0 13804
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
domneq0.b  |-  B  =  ( Base `  R
)
domneq0.t  |-  .x.  =  ( .r `  R )
domneq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
domneq0  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )

Proof of Theorem domneq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 998 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  e.  B  /\  Y  e.  B )
)
2 domneq0.b . . . . . 6  |-  B  =  ( Base `  R
)
3 domneq0.t . . . . . 6  |-  .x.  =  ( .r `  R )
4 domneq0.z . . . . . 6  |-  .0.  =  ( 0g `  R )
52, 3, 4isdomn 13801 . . . . 5  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
65simprbi 275 . . . 4  |-  ( R  e. Domn  ->  A. x  e.  B  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) )
763ad2ant1 1020 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) )
8 oveq1 5929 . . . . . 6  |-  ( x  =  X  ->  (
x  .x.  y )  =  ( X  .x.  y ) )
98eqeq1d 2205 . . . . 5  |-  ( x  =  X  ->  (
( x  .x.  y
)  =  .0.  <->  ( X  .x.  y )  =  .0.  ) )
10 eqeq1 2203 . . . . . 6  |-  ( x  =  X  ->  (
x  =  .0.  <->  X  =  .0.  ) )
1110orbi1d 792 . . . . 5  |-  ( x  =  X  ->  (
( x  =  .0. 
\/  y  =  .0.  )  <->  ( X  =  .0.  \/  y  =  .0.  ) ) )
129, 11imbi12d 234 . . . 4  |-  ( x  =  X  ->  (
( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) )  <->  ( ( X  .x.  y )  =  .0.  ->  ( X  =  .0.  \/  y  =  .0.  ) ) ) )
13 oveq2 5930 . . . . . 6  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
1413eqeq1d 2205 . . . . 5  |-  ( y  =  Y  ->  (
( X  .x.  y
)  =  .0.  <->  ( X  .x.  Y )  =  .0.  ) )
15 eqeq1 2203 . . . . . 6  |-  ( y  =  Y  ->  (
y  =  .0.  <->  Y  =  .0.  ) )
1615orbi2d 791 . . . . 5  |-  ( y  =  Y  ->  (
( X  =  .0. 
\/  y  =  .0.  )  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
1714, 16imbi12d 234 . . . 4  |-  ( y  =  Y  ->  (
( ( X  .x.  y )  =  .0. 
->  ( X  =  .0. 
\/  y  =  .0.  ) )  <->  ( ( X  .x.  Y )  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  ) ) ) )
1812, 17rspc2va 2882 . . 3  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) )  ->  ( ( X 
.x.  Y )  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
191, 7, 18syl2anc 411 . 2  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  )
) )
20 domnring 13803 . . . . . 6  |-  ( R  e. Domn  ->  R  e.  Ring )
21203ad2ant1 1020 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
22 simp3 1001 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
232, 3, 4ringlz 13575 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  .x.  Y )  =  .0.  )
2421, 22, 23syl2anc 411 . . . 4  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .x.  Y )  =  .0.  )
25 oveq1 5929 . . . . 5  |-  ( X  =  .0.  ->  ( X  .x.  Y )  =  (  .0.  .x.  Y
) )
2625eqeq1d 2205 . . . 4  |-  ( X  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  (  .0.  .x. 
Y )  =  .0.  ) )
2724, 26syl5ibrcom 157 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  .0.  ->  ( X  .x.  Y )  =  .0.  ) )
28 simp2 1000 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
292, 3, 4ringrz 13576 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
3021, 28, 29syl2anc 411 . . . 4  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
31 oveq2 5930 . . . . 5  |-  ( Y  =  .0.  ->  ( X  .x.  Y )  =  ( X  .x.  .0.  ) )
3231eqeq1d 2205 . . . 4  |-  ( Y  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  .x.  .0.  )  =  .0.  ) )
3330, 32syl5ibrcom 157 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  =  .0.  ->  ( X  .x.  Y )  =  .0.  ) )
3427, 33jaod 718 . 2  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  =  .0. 
\/  Y  =  .0.  )  ->  ( X  .x.  Y )  =  .0.  ) )
3519, 34impbid 129 1  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   Basecbs 12654   .rcmulr 12732   0gc0g 12903   Ringcrg 13528  NzRingcnzr 13711  Domncdomn 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-pre-ltirr 7989  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8061  df-mnf 8062  df-ltxr 8064  df-inn 8988  df-2 9046  df-3 9047  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-plusg 12744  df-mulr 12745  df-0g 12905  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-grp 13111  df-minusg 13112  df-mgp 13453  df-ring 13530  df-nzr 13712  df-domn 13791
This theorem is referenced by:  domnmuln0  13805  znidomb  14190
  Copyright terms: Public domain W3C validator