| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprdomnbg | Unicode version | ||
| Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 14107. (Contributed by SN, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| opprdomn.1 |
|
| Ref | Expression |
|---|---|
| opprdomnbg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdomn.1 |
. . . 4
| |
| 2 | 1 | opprnzrbg 14017 |
. . 3
|
| 3 | eqid 2206 |
. . . . . 6
| |
| 4 | 1, 3 | opprbasg 13907 |
. . . . 5
|
| 5 | vex 2776 |
. . . . . . . . . 10
| |
| 6 | vex 2776 |
. . . . . . . . . 10
| |
| 7 | eqid 2206 |
. . . . . . . . . . 11
| |
| 8 | eqid 2206 |
. . . . . . . . . . 11
| |
| 9 | 3, 7, 1, 8 | opprmulg 13903 |
. . . . . . . . . 10
|
| 10 | 5, 6, 9 | mp3an23 1342 |
. . . . . . . . 9
|
| 11 | 10 | eqcomd 2212 |
. . . . . . . 8
|
| 12 | eqid 2206 |
. . . . . . . . 9
| |
| 13 | 1, 12 | oppr0g 13913 |
. . . . . . . 8
|
| 14 | 11, 13 | eqeq12d 2221 |
. . . . . . 7
|
| 15 | 13 | eqeq2d 2218 |
. . . . . . . . 9
|
| 16 | 13 | eqeq2d 2218 |
. . . . . . . . 9
|
| 17 | 15, 16 | orbi12d 795 |
. . . . . . . 8
|
| 18 | orcom 730 |
. . . . . . . 8
| |
| 19 | 17, 18 | bitrdi 196 |
. . . . . . 7
|
| 20 | 14, 19 | imbi12d 234 |
. . . . . 6
|
| 21 | 4, 20 | raleqbidv 2719 |
. . . . 5
|
| 22 | 4, 21 | raleqbidv 2719 |
. . . 4
|
| 23 | ralcom 2670 |
. . . 4
| |
| 24 | 22, 23 | bitrdi 196 |
. . 3
|
| 25 | 2, 24 | anbi12d 473 |
. 2
|
| 26 | 3, 7, 12 | isdomn 14101 |
. 2
|
| 27 | eqid 2206 |
. . 3
| |
| 28 | eqid 2206 |
. . 3
| |
| 29 | 27, 8, 28 | isdomn 14101 |
. 2
|
| 30 | 25, 26, 29 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-tpos 6343 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-grp 13405 df-mgp 13753 df-ur 13792 df-ring 13830 df-oppr 13900 df-nzr 14012 df-domn 14091 |
| This theorem is referenced by: opprdomn 14107 |
| Copyright terms: Public domain | W3C validator |