| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprdomnbg | Unicode version | ||
| Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 14247. (Contributed by SN, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| opprdomn.1 |
|
| Ref | Expression |
|---|---|
| opprdomnbg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdomn.1 |
. . . 4
| |
| 2 | 1 | opprnzrbg 14157 |
. . 3
|
| 3 | eqid 2229 |
. . . . . 6
| |
| 4 | 1, 3 | opprbasg 14046 |
. . . . 5
|
| 5 | vex 2802 |
. . . . . . . . . 10
| |
| 6 | vex 2802 |
. . . . . . . . . 10
| |
| 7 | eqid 2229 |
. . . . . . . . . . 11
| |
| 8 | eqid 2229 |
. . . . . . . . . . 11
| |
| 9 | 3, 7, 1, 8 | opprmulg 14042 |
. . . . . . . . . 10
|
| 10 | 5, 6, 9 | mp3an23 1363 |
. . . . . . . . 9
|
| 11 | 10 | eqcomd 2235 |
. . . . . . . 8
|
| 12 | eqid 2229 |
. . . . . . . . 9
| |
| 13 | 1, 12 | oppr0g 14052 |
. . . . . . . 8
|
| 14 | 11, 13 | eqeq12d 2244 |
. . . . . . 7
|
| 15 | 13 | eqeq2d 2241 |
. . . . . . . . 9
|
| 16 | 13 | eqeq2d 2241 |
. . . . . . . . 9
|
| 17 | 15, 16 | orbi12d 798 |
. . . . . . . 8
|
| 18 | orcom 733 |
. . . . . . . 8
| |
| 19 | 17, 18 | bitrdi 196 |
. . . . . . 7
|
| 20 | 14, 19 | imbi12d 234 |
. . . . . 6
|
| 21 | 4, 20 | raleqbidv 2744 |
. . . . 5
|
| 22 | 4, 21 | raleqbidv 2744 |
. . . 4
|
| 23 | ralcom 2694 |
. . . 4
| |
| 24 | 22, 23 | bitrdi 196 |
. . 3
|
| 25 | 2, 24 | anbi12d 473 |
. 2
|
| 26 | 3, 7, 12 | isdomn 14241 |
. 2
|
| 27 | eqid 2229 |
. . 3
| |
| 28 | eqid 2229 |
. . 3
| |
| 29 | 27, 8, 28 | isdomn 14241 |
. 2
|
| 30 | 25, 26, 29 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-tpos 6397 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-mgp 13892 df-ur 13931 df-ring 13969 df-oppr 14039 df-nzr 14152 df-domn 14231 |
| This theorem is referenced by: opprdomn 14247 |
| Copyright terms: Public domain | W3C validator |