ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprdomnbg Unicode version

Theorem opprdomnbg 13806
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 13807. (Contributed by SN, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprdomnbg  |-  ( R  e.  V  ->  ( R  e. Domn  <->  O  e. Domn ) )

Proof of Theorem opprdomnbg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprdomn.1 . . . 4  |-  O  =  (oppr
`  R )
21opprnzrbg 13717 . . 3  |-  ( R  e.  V  ->  ( R  e. NzRing  <->  O  e. NzRing ) )
3 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
41, 3opprbasg 13607 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
5 vex 2766 . . . . . . . . . 10  |-  y  e. 
_V
6 vex 2766 . . . . . . . . . 10  |-  x  e. 
_V
7 eqid 2196 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
8 eqid 2196 . . . . . . . . . . 11  |-  ( .r
`  O )  =  ( .r `  O
)
93, 7, 1, 8opprmulg 13603 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  y  e.  _V  /\  x  e.  _V )  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
105, 6, 9mp3an23 1340 . . . . . . . . 9  |-  ( R  e.  V  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
1110eqcomd 2202 . . . . . . . 8  |-  ( R  e.  V  ->  (
x ( .r `  R ) y )  =  ( y ( .r `  O ) x ) )
12 eqid 2196 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
131, 12oppr0g 13613 . . . . . . . 8  |-  ( R  e.  V  ->  ( 0g `  R )  =  ( 0g `  O
) )
1411, 13eqeq12d 2211 . . . . . . 7  |-  ( R  e.  V  ->  (
( x ( .r
`  R ) y )  =  ( 0g
`  R )  <->  ( y
( .r `  O
) x )  =  ( 0g `  O
) ) )
1513eqeq2d 2208 . . . . . . . . 9  |-  ( R  e.  V  ->  (
x  =  ( 0g
`  R )  <->  x  =  ( 0g `  O ) ) )
1613eqeq2d 2208 . . . . . . . . 9  |-  ( R  e.  V  ->  (
y  =  ( 0g
`  R )  <->  y  =  ( 0g `  O ) ) )
1715, 16orbi12d 794 . . . . . . . 8  |-  ( R  e.  V  ->  (
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) )  <->  ( x  =  ( 0g `  O
)  \/  y  =  ( 0g `  O
) ) ) )
18 orcom 729 . . . . . . . 8  |-  ( ( x  =  ( 0g
`  O )  \/  y  =  ( 0g
`  O ) )  <-> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) )
1917, 18bitrdi 196 . . . . . . 7  |-  ( R  e.  V  ->  (
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) )  <->  ( y  =  ( 0g `  O
)  \/  x  =  ( 0g `  O
) ) ) )
2014, 19imbi12d 234 . . . . . 6  |-  ( R  e.  V  ->  (
( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  ( x  =  ( 0g `  R
)  \/  y  =  ( 0g `  R
) ) )  <->  ( (
y ( .r `  O ) x )  =  ( 0g `  O )  ->  (
y  =  ( 0g
`  O )  \/  x  =  ( 0g
`  O ) ) ) ) )
214, 20raleqbidv 2709 . . . . 5  |-  ( R  e.  V  ->  ( A. y  e.  ( Base `  R ) ( ( x ( .r
`  R ) y )  =  ( 0g
`  R )  -> 
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) )  <->  A. y  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
224, 21raleqbidv 2709 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
x  =  ( 0g
`  R )  \/  y  =  ( 0g
`  R ) ) )  <->  A. x  e.  (
Base `  O ) A. y  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
23 ralcom 2660 . . . 4  |-  ( A. x  e.  ( Base `  O ) A. y  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) )  <->  A. y  e.  ( Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r `  O ) x )  =  ( 0g `  O )  ->  (
y  =  ( 0g
`  O )  \/  x  =  ( 0g
`  O ) ) ) )
2422, 23bitrdi 196 . . 3  |-  ( R  e.  V  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
x  =  ( 0g
`  R )  \/  y  =  ( 0g
`  R ) ) )  <->  A. y  e.  (
Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
252, 24anbi12d 473 . 2  |-  ( R  e.  V  ->  (
( R  e. NzRing  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  ( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) ) )  <->  ( O  e. NzRing  /\  A. y  e.  (
Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) ) )
263, 7, 12isdomn 13801 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  ( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) ) ) )
27 eqid 2196 . . 3  |-  ( Base `  O )  =  (
Base `  O )
28 eqid 2196 . . 3  |-  ( 0g
`  O )  =  ( 0g `  O
)
2927, 8, 28isdomn 13801 . 2  |-  ( O  e. Domn 
<->  ( O  e. NzRing  /\  A. y  e.  ( Base `  O ) A. x  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
3025, 26, 293bitr4g 223 1  |-  ( R  e.  V  ->  ( R  e. Domn  <->  O  e. Domn ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   ` cfv 5258  (class class class)co 5922   Basecbs 12654   .rcmulr 12732   0gc0g 12903  opprcoppr 13599  NzRingcnzr 13711  Domncdomn 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-pre-ltirr 7989  ax-pre-lttrn 7991  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8061  df-mnf 8062  df-ltxr 8064  df-inn 8988  df-2 9046  df-3 9047  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-plusg 12744  df-mulr 12745  df-0g 12905  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-grp 13111  df-mgp 13453  df-ur 13492  df-ring 13530  df-oppr 13600  df-nzr 13712  df-domn 13791
This theorem is referenced by:  opprdomn  13807
  Copyright terms: Public domain W3C validator