ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprdomnbg Unicode version

Theorem opprdomnbg 14106
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 14107. (Contributed by SN, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprdomnbg  |-  ( R  e.  V  ->  ( R  e. Domn  <->  O  e. Domn ) )

Proof of Theorem opprdomnbg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprdomn.1 . . . 4  |-  O  =  (oppr
`  R )
21opprnzrbg 14017 . . 3  |-  ( R  e.  V  ->  ( R  e. NzRing  <->  O  e. NzRing ) )
3 eqid 2206 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
41, 3opprbasg 13907 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
5 vex 2776 . . . . . . . . . 10  |-  y  e. 
_V
6 vex 2776 . . . . . . . . . 10  |-  x  e. 
_V
7 eqid 2206 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
8 eqid 2206 . . . . . . . . . . 11  |-  ( .r
`  O )  =  ( .r `  O
)
93, 7, 1, 8opprmulg 13903 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  y  e.  _V  /\  x  e.  _V )  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
105, 6, 9mp3an23 1342 . . . . . . . . 9  |-  ( R  e.  V  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
1110eqcomd 2212 . . . . . . . 8  |-  ( R  e.  V  ->  (
x ( .r `  R ) y )  =  ( y ( .r `  O ) x ) )
12 eqid 2206 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
131, 12oppr0g 13913 . . . . . . . 8  |-  ( R  e.  V  ->  ( 0g `  R )  =  ( 0g `  O
) )
1411, 13eqeq12d 2221 . . . . . . 7  |-  ( R  e.  V  ->  (
( x ( .r
`  R ) y )  =  ( 0g
`  R )  <->  ( y
( .r `  O
) x )  =  ( 0g `  O
) ) )
1513eqeq2d 2218 . . . . . . . . 9  |-  ( R  e.  V  ->  (
x  =  ( 0g
`  R )  <->  x  =  ( 0g `  O ) ) )
1613eqeq2d 2218 . . . . . . . . 9  |-  ( R  e.  V  ->  (
y  =  ( 0g
`  R )  <->  y  =  ( 0g `  O ) ) )
1715, 16orbi12d 795 . . . . . . . 8  |-  ( R  e.  V  ->  (
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) )  <->  ( x  =  ( 0g `  O
)  \/  y  =  ( 0g `  O
) ) ) )
18 orcom 730 . . . . . . . 8  |-  ( ( x  =  ( 0g
`  O )  \/  y  =  ( 0g
`  O ) )  <-> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) )
1917, 18bitrdi 196 . . . . . . 7  |-  ( R  e.  V  ->  (
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) )  <->  ( y  =  ( 0g `  O
)  \/  x  =  ( 0g `  O
) ) ) )
2014, 19imbi12d 234 . . . . . 6  |-  ( R  e.  V  ->  (
( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  ( x  =  ( 0g `  R
)  \/  y  =  ( 0g `  R
) ) )  <->  ( (
y ( .r `  O ) x )  =  ( 0g `  O )  ->  (
y  =  ( 0g
`  O )  \/  x  =  ( 0g
`  O ) ) ) ) )
214, 20raleqbidv 2719 . . . . 5  |-  ( R  e.  V  ->  ( A. y  e.  ( Base `  R ) ( ( x ( .r
`  R ) y )  =  ( 0g
`  R )  -> 
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) )  <->  A. y  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
224, 21raleqbidv 2719 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
x  =  ( 0g
`  R )  \/  y  =  ( 0g
`  R ) ) )  <->  A. x  e.  (
Base `  O ) A. y  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
23 ralcom 2670 . . . 4  |-  ( A. x  e.  ( Base `  O ) A. y  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) )  <->  A. y  e.  ( Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r `  O ) x )  =  ( 0g `  O )  ->  (
y  =  ( 0g
`  O )  \/  x  =  ( 0g
`  O ) ) ) )
2422, 23bitrdi 196 . . 3  |-  ( R  e.  V  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
x  =  ( 0g
`  R )  \/  y  =  ( 0g
`  R ) ) )  <->  A. y  e.  (
Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
252, 24anbi12d 473 . 2  |-  ( R  e.  V  ->  (
( R  e. NzRing  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  ( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) ) )  <->  ( O  e. NzRing  /\  A. y  e.  (
Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) ) )
263, 7, 12isdomn 14101 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  ( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) ) ) )
27 eqid 2206 . . 3  |-  ( Base `  O )  =  (
Base `  O )
28 eqid 2206 . . 3  |-  ( 0g
`  O )  =  ( 0g `  O
)
2927, 8, 28isdomn 14101 . 2  |-  ( O  e. Domn 
<->  ( O  e. NzRing  /\  A. y  e.  ( Base `  O ) A. x  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
3025, 26, 293bitr4g 223 1  |-  ( R  e.  V  ->  ( R  e. Domn  <->  O  e. Domn ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773   ` cfv 5279  (class class class)co 5956   Basecbs 12902   .rcmulr 12980   0gc0g 13158  opprcoppr 13899  NzRingcnzr 14011  Domncdomn 14088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-lttrn 8054  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-tpos 6343  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-mgp 13753  df-ur 13792  df-ring 13830  df-oppr 13900  df-nzr 14012  df-domn 14091
This theorem is referenced by:  opprdomn  14107
  Copyright terms: Public domain W3C validator