ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprdomnbg Unicode version

Theorem opprdomnbg 14223
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 14224. (Contributed by SN, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprdomnbg  |-  ( R  e.  V  ->  ( R  e. Domn  <->  O  e. Domn ) )

Proof of Theorem opprdomnbg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprdomn.1 . . . 4  |-  O  =  (oppr
`  R )
21opprnzrbg 14134 . . 3  |-  ( R  e.  V  ->  ( R  e. NzRing  <->  O  e. NzRing ) )
3 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
41, 3opprbasg 14024 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
5 vex 2802 . . . . . . . . . 10  |-  y  e. 
_V
6 vex 2802 . . . . . . . . . 10  |-  x  e. 
_V
7 eqid 2229 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
8 eqid 2229 . . . . . . . . . . 11  |-  ( .r
`  O )  =  ( .r `  O
)
93, 7, 1, 8opprmulg 14020 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  y  e.  _V  /\  x  e.  _V )  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
105, 6, 9mp3an23 1363 . . . . . . . . 9  |-  ( R  e.  V  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
1110eqcomd 2235 . . . . . . . 8  |-  ( R  e.  V  ->  (
x ( .r `  R ) y )  =  ( y ( .r `  O ) x ) )
12 eqid 2229 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
131, 12oppr0g 14030 . . . . . . . 8  |-  ( R  e.  V  ->  ( 0g `  R )  =  ( 0g `  O
) )
1411, 13eqeq12d 2244 . . . . . . 7  |-  ( R  e.  V  ->  (
( x ( .r
`  R ) y )  =  ( 0g
`  R )  <->  ( y
( .r `  O
) x )  =  ( 0g `  O
) ) )
1513eqeq2d 2241 . . . . . . . . 9  |-  ( R  e.  V  ->  (
x  =  ( 0g
`  R )  <->  x  =  ( 0g `  O ) ) )
1613eqeq2d 2241 . . . . . . . . 9  |-  ( R  e.  V  ->  (
y  =  ( 0g
`  R )  <->  y  =  ( 0g `  O ) ) )
1715, 16orbi12d 798 . . . . . . . 8  |-  ( R  e.  V  ->  (
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) )  <->  ( x  =  ( 0g `  O
)  \/  y  =  ( 0g `  O
) ) ) )
18 orcom 733 . . . . . . . 8  |-  ( ( x  =  ( 0g
`  O )  \/  y  =  ( 0g
`  O ) )  <-> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) )
1917, 18bitrdi 196 . . . . . . 7  |-  ( R  e.  V  ->  (
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) )  <->  ( y  =  ( 0g `  O
)  \/  x  =  ( 0g `  O
) ) ) )
2014, 19imbi12d 234 . . . . . 6  |-  ( R  e.  V  ->  (
( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  ( x  =  ( 0g `  R
)  \/  y  =  ( 0g `  R
) ) )  <->  ( (
y ( .r `  O ) x )  =  ( 0g `  O )  ->  (
y  =  ( 0g
`  O )  \/  x  =  ( 0g
`  O ) ) ) ) )
214, 20raleqbidv 2744 . . . . 5  |-  ( R  e.  V  ->  ( A. y  e.  ( Base `  R ) ( ( x ( .r
`  R ) y )  =  ( 0g
`  R )  -> 
( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) )  <->  A. y  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
224, 21raleqbidv 2744 . . . 4  |-  ( R  e.  V  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
x  =  ( 0g
`  R )  \/  y  =  ( 0g
`  R ) ) )  <->  A. x  e.  (
Base `  O ) A. y  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
23 ralcom 2694 . . . 4  |-  ( A. x  e.  ( Base `  O ) A. y  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) )  <->  A. y  e.  ( Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r `  O ) x )  =  ( 0g `  O )  ->  (
y  =  ( 0g
`  O )  \/  x  =  ( 0g
`  O ) ) ) )
2422, 23bitrdi 196 . . 3  |-  ( R  e.  V  ->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
x  =  ( 0g
`  R )  \/  y  =  ( 0g
`  R ) ) )  <->  A. y  e.  (
Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
252, 24anbi12d 473 . 2  |-  ( R  e.  V  ->  (
( R  e. NzRing  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  ( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) ) )  <->  ( O  e. NzRing  /\  A. y  e.  (
Base `  O ) A. x  e.  ( Base `  O ) ( ( y ( .r
`  O ) x )  =  ( 0g
`  O )  -> 
( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) ) )
263, 7, 12isdomn 14218 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  ( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) ) ) )
27 eqid 2229 . . 3  |-  ( Base `  O )  =  (
Base `  O )
28 eqid 2229 . . 3  |-  ( 0g
`  O )  =  ( 0g `  O
)
2927, 8, 28isdomn 14218 . 2  |-  ( O  e. Domn 
<->  ( O  e. NzRing  /\  A. y  e.  ( Base `  O ) A. x  e.  ( Base `  O
) ( ( y ( .r `  O
) x )  =  ( 0g `  O
)  ->  ( y  =  ( 0g `  O )  \/  x  =  ( 0g `  O ) ) ) ) )
3025, 26, 293bitr4g 223 1  |-  ( R  e.  V  ->  ( R  e. Domn  <->  O  e. Domn ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   ` cfv 5314  (class class class)co 5994   Basecbs 13018   .rcmulr 13097   0gc0g 13275  opprcoppr 14016  NzRingcnzr 14128  Domncdomn 14205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-tpos 6381  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-mgp 13870  df-ur 13909  df-ring 13947  df-oppr 14017  df-nzr 14129  df-domn 14208
This theorem is referenced by:  opprdomn  14224
  Copyright terms: Public domain W3C validator