ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isdomn GIF version

Theorem isdomn 13801
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b 𝐵 = (Base‘𝑅)
isdomn.t · = (.r𝑅)
isdomn.z 0 = (0g𝑅)
Assertion
Ref Expression
isdomn (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isdomn
Dummy variables 𝑏 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12712 . . . . 5 Base Fn V
2 vex 2766 . . . . 5 𝑟 ∈ V
3 funfvex 5575 . . . . . 6 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
43funfni 5358 . . . . 5 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
51, 2, 4mp2an 426 . . . 4 (Base‘𝑟) ∈ V
65a1i 9 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
7 fveq2 5558 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
8 isdomn.b . . . 4 𝐵 = (Base‘𝑅)
97, 8eqtr4di 2247 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
10 fn0g 12994 . . . . . 6 0g Fn V
11 funfvex 5575 . . . . . . 7 ((Fun 0g𝑟 ∈ dom 0g) → (0g𝑟) ∈ V)
1211funfni 5358 . . . . . 6 ((0g Fn V ∧ 𝑟 ∈ V) → (0g𝑟) ∈ V)
1310, 2, 12mp2an 426 . . . . 5 (0g𝑟) ∈ V
1413a1i 9 . . . 4 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) ∈ V)
15 fveq2 5558 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1615adantr 276 . . . . 5 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) = (0g𝑅))
17 isdomn.z . . . . 5 0 = (0g𝑅)
1816, 17eqtr4di 2247 . . . 4 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) = 0 )
19 simplr 528 . . . . 5 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → 𝑏 = 𝐵)
20 fveq2 5558 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
21 isdomn.t . . . . . . . . . 10 · = (.r𝑅)
2220, 21eqtr4di 2247 . . . . . . . . 9 (𝑟 = 𝑅 → (.r𝑟) = · )
2322oveqdr 5950 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
24 id 19 . . . . . . . 8 (𝑧 = 0𝑧 = 0 )
2523, 24eqeqan12d 2212 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥(.r𝑟)𝑦) = 𝑧 ↔ (𝑥 · 𝑦) = 0 ))
26 eqeq2 2206 . . . . . . . . 9 (𝑧 = 0 → (𝑥 = 𝑧𝑥 = 0 ))
27 eqeq2 2206 . . . . . . . . 9 (𝑧 = 0 → (𝑦 = 𝑧𝑦 = 0 ))
2826, 27orbi12d 794 . . . . . . . 8 (𝑧 = 0 → ((𝑥 = 𝑧𝑦 = 𝑧) ↔ (𝑥 = 0𝑦 = 0 )))
2928adantl 277 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥 = 𝑧𝑦 = 𝑧) ↔ (𝑥 = 0𝑦 = 0 )))
3025, 29imbi12d 234 . . . . . 6 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
3119, 30raleqbidv 2709 . . . . 5 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
3219, 31raleqbidv 2709 . . . 4 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
3314, 18, 32sbcied2 3027 . . 3 ((𝑟 = 𝑅𝑏 = 𝐵) → ([(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
346, 9, 33sbcied2 3027 . 2 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
35 df-domn 13791 . 2 Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧))}
3634, 35elrab2 2923 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  [wsbc 2989   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12654  .rcmulr 12732  0gc0g 12903  NzRingcnzr 13711  Domncdomn 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7968  ax-resscn 7969  ax-1re 7971  ax-addrcl 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8988  df-ndx 12657  df-slot 12658  df-base 12660  df-0g 12905  df-domn 13791
This theorem is referenced by:  domnnzr  13802  domneq0  13804  opprdomnbg  13806  znidom  14189
  Copyright terms: Public domain W3C validator