ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isdomn GIF version

Theorem isdomn 14218
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b 𝐵 = (Base‘𝑅)
isdomn.t · = (.r𝑅)
isdomn.z 0 = (0g𝑅)
Assertion
Ref Expression
isdomn (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isdomn
Dummy variables 𝑏 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13077 . . . . 5 Base Fn V
2 vex 2802 . . . . 5 𝑟 ∈ V
3 funfvex 5640 . . . . . 6 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
43funfni 5419 . . . . 5 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
51, 2, 4mp2an 426 . . . 4 (Base‘𝑟) ∈ V
65a1i 9 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
7 fveq2 5623 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
8 isdomn.b . . . 4 𝐵 = (Base‘𝑅)
97, 8eqtr4di 2280 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
10 fn0g 13394 . . . . . 6 0g Fn V
11 funfvex 5640 . . . . . . 7 ((Fun 0g𝑟 ∈ dom 0g) → (0g𝑟) ∈ V)
1211funfni 5419 . . . . . 6 ((0g Fn V ∧ 𝑟 ∈ V) → (0g𝑟) ∈ V)
1310, 2, 12mp2an 426 . . . . 5 (0g𝑟) ∈ V
1413a1i 9 . . . 4 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) ∈ V)
15 fveq2 5623 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1615adantr 276 . . . . 5 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) = (0g𝑅))
17 isdomn.z . . . . 5 0 = (0g𝑅)
1816, 17eqtr4di 2280 . . . 4 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) = 0 )
19 simplr 528 . . . . 5 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → 𝑏 = 𝐵)
20 fveq2 5623 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
21 isdomn.t . . . . . . . . . 10 · = (.r𝑅)
2220, 21eqtr4di 2280 . . . . . . . . 9 (𝑟 = 𝑅 → (.r𝑟) = · )
2322oveqdr 6022 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
24 id 19 . . . . . . . 8 (𝑧 = 0𝑧 = 0 )
2523, 24eqeqan12d 2245 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥(.r𝑟)𝑦) = 𝑧 ↔ (𝑥 · 𝑦) = 0 ))
26 eqeq2 2239 . . . . . . . . 9 (𝑧 = 0 → (𝑥 = 𝑧𝑥 = 0 ))
27 eqeq2 2239 . . . . . . . . 9 (𝑧 = 0 → (𝑦 = 𝑧𝑦 = 0 ))
2826, 27orbi12d 798 . . . . . . . 8 (𝑧 = 0 → ((𝑥 = 𝑧𝑦 = 𝑧) ↔ (𝑥 = 0𝑦 = 0 )))
2928adantl 277 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥 = 𝑧𝑦 = 𝑧) ↔ (𝑥 = 0𝑦 = 0 )))
3025, 29imbi12d 234 . . . . . 6 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
3119, 30raleqbidv 2744 . . . . 5 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
3219, 31raleqbidv 2744 . . . 4 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
3314, 18, 32sbcied2 3066 . . 3 ((𝑟 = 𝑅𝑏 = 𝐵) → ([(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
346, 9, 33sbcied2 3066 . 2 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
35 df-domn 14208 . 2 Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧))}
3634, 35elrab2 2962 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  [wsbc 3028   Fn wfn 5309  cfv 5314  (class class class)co 5994  Basecbs 13018  .rcmulr 13097  0gc0g 13275  NzRingcnzr 14128  Domncdomn 14205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024  df-0g 13277  df-domn 14208
This theorem is referenced by:  domnnzr  14219  domneq0  14221  opprdomnbg  14223  znidom  14606
  Copyright terms: Public domain W3C validator