ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemmo Unicode version

Theorem iseqf1olemmo 10687
Description: Lemma for seq3f1o 10699. Showing that  Q is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemmo.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemmo.b  |-  ( ph  ->  B  e.  ( M ... N ) )
iseqf1olemmo.eq  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
Assertion
Ref Expression
iseqf1olemmo  |-  ( ph  ->  A  =  B )
Distinct variable groups:    u, A    u, B    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemmo
StepHypRef Expression
1 iseqf1olemqf.k . . . . 5  |-  ( ph  ->  K  e.  ( M ... N ) )
21ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  K  e.  ( M ... N
) )
3 iseqf1olemqf.j . . . . 5  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
43ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
5 iseqf1olemmo.a . . . . 5  |-  ( ph  ->  A  e.  ( M ... N ) )
65ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( M ... N
) )
7 iseqf1olemmo.b . . . . 5  |-  ( ph  ->  B  e.  ( M ... N ) )
87ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( M ... N
) )
9 iseqf1olemmo.eq . . . . 5  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
109ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( Q `  A )  =  ( Q `  B ) )
11 iseqf1olemqf.q . . . 4  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
12 simplr 528 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( K ... ( `' J `  K ) ) )
13 simpr 110 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( K ... ( `' J `  K ) ) )
142, 4, 6, 8, 10, 11, 12, 13iseqf1olemab 10684 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
15 simplr 528 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( K ... ( `' J `  K ) ) )
16 simpr 110 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
1715, 16jca 306 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
181, 3, 5, 7, 9, 11iseqf1olemnab 10683 . . . . 5  |-  ( ph  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
1918ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
2017, 19pm2.21dd 621 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
21 elfzelz 10182 . . . . . . 7  |-  ( B  e.  ( M ... N )  ->  B  e.  ZZ )
227, 21syl 14 . . . . . 6  |-  ( ph  ->  B  e.  ZZ )
23 elfzelz 10182 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
241, 23syl 14 . . . . . 6  |-  ( ph  ->  K  e.  ZZ )
25 f1ocnv 5557 . . . . . . . . 9  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
26 f1of 5544 . . . . . . . . 9  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
273, 25, 263syl 17 . . . . . . . 8  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
2827, 1ffvelcdmd 5739 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
29 elfzelz 10182 . . . . . . 7  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
3028, 29syl 14 . . . . . 6  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
31 fzdcel 10197 . . . . . 6  |-  ( ( B  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  B  e.  ( K ... ( `' J `  K ) ) )
3222, 24, 30, 31syl3anc 1250 . . . . 5  |-  ( ph  -> DECID  B  e.  ( K ... ( `' J `  K ) ) )
33 exmiddc 838 . . . . 5  |-  (DECID  B  e.  ( K ... ( `' J `  K ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
3432, 33syl 14 . . . 4  |-  ( ph  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
3534adantr 276 . . 3  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/ 
-.  B  e.  ( K ... ( `' J `  K ) ) ) )
3614, 20, 35mpjaodan 800 . 2  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
37 simpr 110 . . . . 5  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( K ... ( `' J `  K ) ) )
38 simplr 528 . . . . 5  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
3937, 38jca 306 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
409eqcomd 2213 . . . . . 6  |-  ( ph  ->  ( Q `  B
)  =  ( Q `
 A ) )
411, 3, 7, 5, 40, 11iseqf1olemnab 10683 . . . . 5  |-  ( ph  ->  -.  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
4241ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
4339, 42pm2.21dd 621 . . 3  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
441ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  K  e.  ( M ... N
) )
453ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
465ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( M ... N
) )
477ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( M ... N
) )
489ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( Q `  A )  =  ( Q `  B ) )
49 simplr 528 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
50 simpr 110 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
5144, 45, 46, 47, 48, 11, 49, 50iseqf1olemnanb 10685 . . 3  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
5234adantr 276 . . 3  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/ 
-.  B  e.  ( K ... ( `' J `  K ) ) ) )
5343, 51, 52mpjaodan 800 . 2  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
54 elfzelz 10182 . . . . 5  |-  ( A  e.  ( M ... N )  ->  A  e.  ZZ )
555, 54syl 14 . . . 4  |-  ( ph  ->  A  e.  ZZ )
56 fzdcel 10197 . . . 4  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
5755, 24, 30, 56syl3anc 1250 . . 3  |-  ( ph  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
58 exmiddc 838 . . 3  |-  (DECID  A  e.  ( K ... ( `' J `  K ) )  ->  ( A  e.  ( K ... ( `' J `  K ) )  \/  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
5957, 58syl 14 . 2  |-  ( ph  ->  ( A  e.  ( K ... ( `' J `  K ) )  \/  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
6036, 53, 59mpjaodan 800 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2178   ifcif 3579    |-> cmpt 4121   `'ccnv 4692   -->wf 5286   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967   1c1 7961    - cmin 8278   ZZcz 9407   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by:  iseqf1olemqf1o  10688
  Copyright terms: Public domain W3C validator