ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemmo Unicode version

Theorem iseqf1olemmo 10579
Description: Lemma for seq3f1o 10591. Showing that  Q is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemmo.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemmo.b  |-  ( ph  ->  B  e.  ( M ... N ) )
iseqf1olemmo.eq  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
Assertion
Ref Expression
iseqf1olemmo  |-  ( ph  ->  A  =  B )
Distinct variable groups:    u, A    u, B    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemmo
StepHypRef Expression
1 iseqf1olemqf.k . . . . 5  |-  ( ph  ->  K  e.  ( M ... N ) )
21ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  K  e.  ( M ... N
) )
3 iseqf1olemqf.j . . . . 5  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
43ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
5 iseqf1olemmo.a . . . . 5  |-  ( ph  ->  A  e.  ( M ... N ) )
65ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( M ... N
) )
7 iseqf1olemmo.b . . . . 5  |-  ( ph  ->  B  e.  ( M ... N ) )
87ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( M ... N
) )
9 iseqf1olemmo.eq . . . . 5  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
109ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( Q `  A )  =  ( Q `  B ) )
11 iseqf1olemqf.q . . . 4  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
12 simplr 528 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( K ... ( `' J `  K ) ) )
13 simpr 110 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( K ... ( `' J `  K ) ) )
142, 4, 6, 8, 10, 11, 12, 13iseqf1olemab 10576 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
15 simplr 528 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( K ... ( `' J `  K ) ) )
16 simpr 110 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
1715, 16jca 306 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
181, 3, 5, 7, 9, 11iseqf1olemnab 10575 . . . . 5  |-  ( ph  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
1918ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
2017, 19pm2.21dd 621 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
21 elfzelz 10094 . . . . . . 7  |-  ( B  e.  ( M ... N )  ->  B  e.  ZZ )
227, 21syl 14 . . . . . 6  |-  ( ph  ->  B  e.  ZZ )
23 elfzelz 10094 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
241, 23syl 14 . . . . . 6  |-  ( ph  ->  K  e.  ZZ )
25 f1ocnv 5514 . . . . . . . . 9  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
26 f1of 5501 . . . . . . . . 9  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
273, 25, 263syl 17 . . . . . . . 8  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
2827, 1ffvelcdmd 5695 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
29 elfzelz 10094 . . . . . . 7  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
3028, 29syl 14 . . . . . 6  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
31 fzdcel 10109 . . . . . 6  |-  ( ( B  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  B  e.  ( K ... ( `' J `  K ) ) )
3222, 24, 30, 31syl3anc 1249 . . . . 5  |-  ( ph  -> DECID  B  e.  ( K ... ( `' J `  K ) ) )
33 exmiddc 837 . . . . 5  |-  (DECID  B  e.  ( K ... ( `' J `  K ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
3432, 33syl 14 . . . 4  |-  ( ph  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
3534adantr 276 . . 3  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/ 
-.  B  e.  ( K ... ( `' J `  K ) ) ) )
3614, 20, 35mpjaodan 799 . 2  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
37 simpr 110 . . . . 5  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( K ... ( `' J `  K ) ) )
38 simplr 528 . . . . 5  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
3937, 38jca 306 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
409eqcomd 2199 . . . . . 6  |-  ( ph  ->  ( Q `  B
)  =  ( Q `
 A ) )
411, 3, 7, 5, 40, 11iseqf1olemnab 10575 . . . . 5  |-  ( ph  ->  -.  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
4241ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
4339, 42pm2.21dd 621 . . 3  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
441ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  K  e.  ( M ... N
) )
453ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
465ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( M ... N
) )
477ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( M ... N
) )
489ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( Q `  A )  =  ( Q `  B ) )
49 simplr 528 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
50 simpr 110 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
5144, 45, 46, 47, 48, 11, 49, 50iseqf1olemnanb 10577 . . 3  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
5234adantr 276 . . 3  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/ 
-.  B  e.  ( K ... ( `' J `  K ) ) ) )
5343, 51, 52mpjaodan 799 . 2  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
54 elfzelz 10094 . . . . 5  |-  ( A  e.  ( M ... N )  ->  A  e.  ZZ )
555, 54syl 14 . . . 4  |-  ( ph  ->  A  e.  ZZ )
56 fzdcel 10109 . . . 4  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
5755, 24, 30, 56syl3anc 1249 . . 3  |-  ( ph  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
58 exmiddc 837 . . 3  |-  (DECID  A  e.  ( K ... ( `' J `  K ) )  ->  ( A  e.  ( K ... ( `' J `  K ) )  \/  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
5957, 58syl 14 . 2  |-  ( ph  ->  ( A  e.  ( K ... ( `' J `  K ) )  \/  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
6036, 53, 59mpjaodan 799 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   ifcif 3558    |-> cmpt 4091   `'ccnv 4659   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   1c1 7875    - cmin 8192   ZZcz 9320   ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  iseqf1olemqf1o  10580
  Copyright terms: Public domain W3C validator