ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemmo Unicode version

Theorem iseqf1olemmo 10427
Description: Lemma for seq3f1o 10439. Showing that  Q is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemmo.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemmo.b  |-  ( ph  ->  B  e.  ( M ... N ) )
iseqf1olemmo.eq  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
Assertion
Ref Expression
iseqf1olemmo  |-  ( ph  ->  A  =  B )
Distinct variable groups:    u, A    u, B    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemmo
StepHypRef Expression
1 iseqf1olemqf.k . . . . 5  |-  ( ph  ->  K  e.  ( M ... N ) )
21ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  K  e.  ( M ... N
) )
3 iseqf1olemqf.j . . . . 5  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
43ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
5 iseqf1olemmo.a . . . . 5  |-  ( ph  ->  A  e.  ( M ... N ) )
65ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( M ... N
) )
7 iseqf1olemmo.b . . . . 5  |-  ( ph  ->  B  e.  ( M ... N ) )
87ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( M ... N
) )
9 iseqf1olemmo.eq . . . . 5  |-  ( ph  ->  ( Q `  A
)  =  ( Q `
 B ) )
109ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( Q `  A )  =  ( Q `  B ) )
11 iseqf1olemqf.q . . . 4  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
12 simplr 520 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( K ... ( `' J `  K ) ) )
13 simpr 109 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( K ... ( `' J `  K ) ) )
142, 4, 6, 8, 10, 11, 12, 13iseqf1olemab 10424 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
15 simplr 520 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( K ... ( `' J `  K ) ) )
16 simpr 109 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
1715, 16jca 304 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
181, 3, 5, 7, 9, 11iseqf1olemnab 10423 . . . . 5  |-  ( ph  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
1918ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
2017, 19pm2.21dd 610 . . 3  |-  ( ( ( ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
21 elfzelz 9960 . . . . . . 7  |-  ( B  e.  ( M ... N )  ->  B  e.  ZZ )
227, 21syl 14 . . . . . 6  |-  ( ph  ->  B  e.  ZZ )
23 elfzelz 9960 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
241, 23syl 14 . . . . . 6  |-  ( ph  ->  K  e.  ZZ )
25 f1ocnv 5445 . . . . . . . . 9  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
26 f1of 5432 . . . . . . . . 9  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
273, 25, 263syl 17 . . . . . . . 8  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
2827, 1ffvelrnd 5621 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
29 elfzelz 9960 . . . . . . 7  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
3028, 29syl 14 . . . . . 6  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
31 fzdcel 9975 . . . . . 6  |-  ( ( B  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  B  e.  ( K ... ( `' J `  K ) ) )
3222, 24, 30, 31syl3anc 1228 . . . . 5  |-  ( ph  -> DECID  B  e.  ( K ... ( `' J `  K ) ) )
33 exmiddc 826 . . . . 5  |-  (DECID  B  e.  ( K ... ( `' J `  K ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
3432, 33syl 14 . . . 4  |-  ( ph  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/  -.  B  e.  ( K ... ( `' J `  K ) ) ) )
3534adantr 274 . . 3  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/ 
-.  B  e.  ( K ... ( `' J `  K ) ) ) )
3614, 20, 35mpjaodan 788 . 2  |-  ( (
ph  /\  A  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
37 simpr 109 . . . . 5  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( K ... ( `' J `  K ) ) )
38 simplr 520 . . . . 5  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
3937, 38jca 304 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
409eqcomd 2171 . . . . . 6  |-  ( ph  ->  ( Q `  B
)  =  ( Q `
 A ) )
411, 3, 7, 5, 40, 11iseqf1olemnab 10423 . . . . 5  |-  ( ph  ->  -.  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
4241ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  ( B  e.  ( K ... ( `' J `  K ) )  /\  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
4339, 42pm2.21dd 610 . . 3  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
441ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  K  e.  ( M ... N
) )
453ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  J : ( M ... N ) -1-1-onto-> ( M ... N
) )
465ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  e.  ( M ... N
) )
477ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  B  e.  ( M ... N
) )
489ad2antrr 480 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  ( Q `  A )  =  ( Q `  B ) )
49 simplr 520 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  A  e.  ( K ... ( `' J `  K ) ) )
50 simpr 109 . . . 4  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )
5144, 45, 46, 47, 48, 11, 49, 50iseqf1olemnanb 10425 . . 3  |-  ( ( ( ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  /\  -.  B  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
5234adantr 274 . . 3  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  ( B  e.  ( K ... ( `' J `  K ) )  \/ 
-.  B  e.  ( K ... ( `' J `  K ) ) ) )
5343, 51, 52mpjaodan 788 . 2  |-  ( (
ph  /\  -.  A  e.  ( K ... ( `' J `  K ) ) )  ->  A  =  B )
54 elfzelz 9960 . . . . 5  |-  ( A  e.  ( M ... N )  ->  A  e.  ZZ )
555, 54syl 14 . . . 4  |-  ( ph  ->  A  e.  ZZ )
56 fzdcel 9975 . . . 4  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
5755, 24, 30, 56syl3anc 1228 . . 3  |-  ( ph  -> DECID  A  e.  ( K ... ( `' J `  K ) ) )
58 exmiddc 826 . . 3  |-  (DECID  A  e.  ( K ... ( `' J `  K ) )  ->  ( A  e.  ( K ... ( `' J `  K ) )  \/  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
5957, 58syl 14 . 2  |-  ( ph  ->  ( A  e.  ( K ... ( `' J `  K ) )  \/  -.  A  e.  ( K ... ( `' J `  K ) ) ) )
6036, 53, 59mpjaodan 788 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   ifcif 3520    |-> cmpt 4043   `'ccnv 4603   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   1c1 7754    - cmin 8069   ZZcz 9191   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  iseqf1olemqf1o  10428
  Copyright terms: Public domain W3C validator