| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemmo | Unicode version | ||
| Description: Lemma for seq3f1o 10664. Showing that |
| Ref | Expression |
|---|---|
| iseqf1olemqf.k |
|
| iseqf1olemqf.j |
|
| iseqf1olemqf.q |
|
| iseqf1olemmo.a |
|
| iseqf1olemmo.b |
|
| iseqf1olemmo.eq |
|
| Ref | Expression |
|---|---|
| iseqf1olemmo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemqf.k |
. . . . 5
| |
| 2 | 1 | ad2antrr 488 |
. . . 4
|
| 3 | iseqf1olemqf.j |
. . . . 5
| |
| 4 | 3 | ad2antrr 488 |
. . . 4
|
| 5 | iseqf1olemmo.a |
. . . . 5
| |
| 6 | 5 | ad2antrr 488 |
. . . 4
|
| 7 | iseqf1olemmo.b |
. . . . 5
| |
| 8 | 7 | ad2antrr 488 |
. . . 4
|
| 9 | iseqf1olemmo.eq |
. . . . 5
| |
| 10 | 9 | ad2antrr 488 |
. . . 4
|
| 11 | iseqf1olemqf.q |
. . . 4
| |
| 12 | simplr 528 |
. . . 4
| |
| 13 | simpr 110 |
. . . 4
| |
| 14 | 2, 4, 6, 8, 10, 11, 12, 13 | iseqf1olemab 10649 |
. . 3
|
| 15 | simplr 528 |
. . . . 5
| |
| 16 | simpr 110 |
. . . . 5
| |
| 17 | 15, 16 | jca 306 |
. . . 4
|
| 18 | 1, 3, 5, 7, 9, 11 | iseqf1olemnab 10648 |
. . . . 5
|
| 19 | 18 | ad2antrr 488 |
. . . 4
|
| 20 | 17, 19 | pm2.21dd 621 |
. . 3
|
| 21 | elfzelz 10149 |
. . . . . . 7
| |
| 22 | 7, 21 | syl 14 |
. . . . . 6
|
| 23 | elfzelz 10149 |
. . . . . . 7
| |
| 24 | 1, 23 | syl 14 |
. . . . . 6
|
| 25 | f1ocnv 5537 |
. . . . . . . . 9
| |
| 26 | f1of 5524 |
. . . . . . . . 9
| |
| 27 | 3, 25, 26 | 3syl 17 |
. . . . . . . 8
|
| 28 | 27, 1 | ffvelcdmd 5718 |
. . . . . . 7
|
| 29 | elfzelz 10149 |
. . . . . . 7
| |
| 30 | 28, 29 | syl 14 |
. . . . . 6
|
| 31 | fzdcel 10164 |
. . . . . 6
| |
| 32 | 22, 24, 30, 31 | syl3anc 1250 |
. . . . 5
|
| 33 | exmiddc 838 |
. . . . 5
| |
| 34 | 32, 33 | syl 14 |
. . . 4
|
| 35 | 34 | adantr 276 |
. . 3
|
| 36 | 14, 20, 35 | mpjaodan 800 |
. 2
|
| 37 | simpr 110 |
. . . . 5
| |
| 38 | simplr 528 |
. . . . 5
| |
| 39 | 37, 38 | jca 306 |
. . . 4
|
| 40 | 9 | eqcomd 2211 |
. . . . . 6
|
| 41 | 1, 3, 7, 5, 40, 11 | iseqf1olemnab 10648 |
. . . . 5
|
| 42 | 41 | ad2antrr 488 |
. . . 4
|
| 43 | 39, 42 | pm2.21dd 621 |
. . 3
|
| 44 | 1 | ad2antrr 488 |
. . . 4
|
| 45 | 3 | ad2antrr 488 |
. . . 4
|
| 46 | 5 | ad2antrr 488 |
. . . 4
|
| 47 | 7 | ad2antrr 488 |
. . . 4
|
| 48 | 9 | ad2antrr 488 |
. . . 4
|
| 49 | simplr 528 |
. . . 4
| |
| 50 | simpr 110 |
. . . 4
| |
| 51 | 44, 45, 46, 47, 48, 11, 49, 50 | iseqf1olemnanb 10650 |
. . 3
|
| 52 | 34 | adantr 276 |
. . 3
|
| 53 | 43, 51, 52 | mpjaodan 800 |
. 2
|
| 54 | elfzelz 10149 |
. . . . 5
| |
| 55 | 5, 54 | syl 14 |
. . . 4
|
| 56 | fzdcel 10164 |
. . . 4
| |
| 57 | 55, 24, 30, 56 | syl3anc 1250 |
. . 3
|
| 58 | exmiddc 838 |
. . 3
| |
| 59 | 57, 58 | syl 14 |
. 2
|
| 60 | 36, 53, 59 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: iseqf1olemqf1o 10653 |
| Copyright terms: Public domain | W3C validator |