ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhmd Unicode version

Theorem isrhmd 13928
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
isrhmd.b  |-  B  =  ( Base `  R
)
isrhmd.o  |-  .1.  =  ( 1r `  R )
isrhmd.n  |-  N  =  ( 1r `  S
)
isrhmd.t  |-  .x.  =  ( .r `  R )
isrhmd.u  |-  .X.  =  ( .r `  S )
isrhmd.r  |-  ( ph  ->  R  e.  Ring )
isrhmd.s  |-  ( ph  ->  S  e.  Ring )
isrhmd.ho  |-  ( ph  ->  ( F `  .1.  )  =  N )
isrhmd.ht  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .x.  y )
)  =  ( ( F `  x ) 
.X.  ( F `  y ) ) )
isrhmd.c  |-  C  =  ( Base `  S
)
isrhmd.p  |-  .+  =  ( +g  `  R )
isrhmd.q  |-  .+^  =  ( +g  `  S )
isrhmd.f  |-  ( ph  ->  F : B --> C )
isrhmd.hp  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
Assertion
Ref Expression
isrhmd  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
Distinct variable groups:    ph, x, y   
x, B, y    x, C, y    x, F, y   
x,  .+ , y    x,  .+^ , y    x, R, y    x, S, y
Allowed substitution hints:    .x. ( x, y)    .X. (
x, y)    .1. ( x, y)    N( x, y)

Proof of Theorem isrhmd
StepHypRef Expression
1 isrhmd.b . 2  |-  B  =  ( Base `  R
)
2 isrhmd.o . 2  |-  .1.  =  ( 1r `  R )
3 isrhmd.n . 2  |-  N  =  ( 1r `  S
)
4 isrhmd.t . 2  |-  .x.  =  ( .r `  R )
5 isrhmd.u . 2  |-  .X.  =  ( .r `  S )
6 isrhmd.r . 2  |-  ( ph  ->  R  e.  Ring )
7 isrhmd.s . 2  |-  ( ph  ->  S  e.  Ring )
8 isrhmd.ho . 2  |-  ( ph  ->  ( F `  .1.  )  =  N )
9 isrhmd.ht . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .x.  y )
)  =  ( ( F `  x ) 
.X.  ( F `  y ) ) )
10 isrhmd.c . . 3  |-  C  =  ( Base `  S
)
11 isrhmd.p . . 3  |-  .+  =  ( +g  `  R )
12 isrhmd.q . . 3  |-  .+^  =  ( +g  `  S )
13 ringgrp 13763 . . . 4  |-  ( R  e.  Ring  ->  R  e. 
Grp )
146, 13syl 14 . . 3  |-  ( ph  ->  R  e.  Grp )
15 ringgrp 13763 . . . 4  |-  ( S  e.  Ring  ->  S  e. 
Grp )
167, 15syl 14 . . 3  |-  ( ph  ->  S  e.  Grp )
17 isrhmd.f . . 3  |-  ( ph  ->  F : B --> C )
18 isrhmd.hp . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
191, 10, 11, 12, 14, 16, 17, 18isghmd 13588 . 2  |-  ( ph  ->  F  e.  ( R 
GrpHom  S ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 19isrhm2d 13927 1  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   -->wf 5267   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   Grpcgrp 13332   1rcur 13721   Ringcrg 13758   RingHom crh 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mhm 13291  df-grp 13335  df-ghm 13577  df-mgp 13683  df-ur 13722  df-ring 13760  df-rhm 13914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator