ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhmd Unicode version

Theorem isrhmd 13722
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
isrhmd.b  |-  B  =  ( Base `  R
)
isrhmd.o  |-  .1.  =  ( 1r `  R )
isrhmd.n  |-  N  =  ( 1r `  S
)
isrhmd.t  |-  .x.  =  ( .r `  R )
isrhmd.u  |-  .X.  =  ( .r `  S )
isrhmd.r  |-  ( ph  ->  R  e.  Ring )
isrhmd.s  |-  ( ph  ->  S  e.  Ring )
isrhmd.ho  |-  ( ph  ->  ( F `  .1.  )  =  N )
isrhmd.ht  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .x.  y )
)  =  ( ( F `  x ) 
.X.  ( F `  y ) ) )
isrhmd.c  |-  C  =  ( Base `  S
)
isrhmd.p  |-  .+  =  ( +g  `  R )
isrhmd.q  |-  .+^  =  ( +g  `  S )
isrhmd.f  |-  ( ph  ->  F : B --> C )
isrhmd.hp  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
Assertion
Ref Expression
isrhmd  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
Distinct variable groups:    ph, x, y   
x, B, y    x, C, y    x, F, y   
x,  .+ , y    x,  .+^ , y    x, R, y    x, S, y
Allowed substitution hints:    .x. ( x, y)    .X. (
x, y)    .1. ( x, y)    N( x, y)

Proof of Theorem isrhmd
StepHypRef Expression
1 isrhmd.b . 2  |-  B  =  ( Base `  R
)
2 isrhmd.o . 2  |-  .1.  =  ( 1r `  R )
3 isrhmd.n . 2  |-  N  =  ( 1r `  S
)
4 isrhmd.t . 2  |-  .x.  =  ( .r `  R )
5 isrhmd.u . 2  |-  .X.  =  ( .r `  S )
6 isrhmd.r . 2  |-  ( ph  ->  R  e.  Ring )
7 isrhmd.s . 2  |-  ( ph  ->  S  e.  Ring )
8 isrhmd.ho . 2  |-  ( ph  ->  ( F `  .1.  )  =  N )
9 isrhmd.ht . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .x.  y )
)  =  ( ( F `  x ) 
.X.  ( F `  y ) ) )
10 isrhmd.c . . 3  |-  C  =  ( Base `  S
)
11 isrhmd.p . . 3  |-  .+  =  ( +g  `  R )
12 isrhmd.q . . 3  |-  .+^  =  ( +g  `  S )
13 ringgrp 13557 . . . 4  |-  ( R  e.  Ring  ->  R  e. 
Grp )
146, 13syl 14 . . 3  |-  ( ph  ->  R  e.  Grp )
15 ringgrp 13557 . . . 4  |-  ( S  e.  Ring  ->  S  e. 
Grp )
167, 15syl 14 . . 3  |-  ( ph  ->  S  e.  Grp )
17 isrhmd.f . . 3  |-  ( ph  ->  F : B --> C )
18 isrhmd.hp . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
191, 10, 11, 12, 14, 16, 17, 18isghmd 13382 . 2  |-  ( ph  ->  F  e.  ( R 
GrpHom  S ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 19isrhm2d 13721 1  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   -->wf 5254   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   Grpcgrp 13132   1rcur 13515   Ringcrg 13552   RingHom crh 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-ghm 13371  df-mgp 13477  df-ur 13516  df-ring 13554  df-rhm 13708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator