| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isrhmd | Unicode version | ||
| Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| isrhmd.b |
|
| isrhmd.o |
|
| isrhmd.n |
|
| isrhmd.t |
|
| isrhmd.u |
|
| isrhmd.r |
|
| isrhmd.s |
|
| isrhmd.ho |
|
| isrhmd.ht |
|
| isrhmd.c |
|
| isrhmd.p |
|
| isrhmd.q |
|
| isrhmd.f |
|
| isrhmd.hp |
|
| Ref | Expression |
|---|---|
| isrhmd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.b |
. 2
| |
| 2 | isrhmd.o |
. 2
| |
| 3 | isrhmd.n |
. 2
| |
| 4 | isrhmd.t |
. 2
| |
| 5 | isrhmd.u |
. 2
| |
| 6 | isrhmd.r |
. 2
| |
| 7 | isrhmd.s |
. 2
| |
| 8 | isrhmd.ho |
. 2
| |
| 9 | isrhmd.ht |
. 2
| |
| 10 | isrhmd.c |
. . 3
| |
| 11 | isrhmd.p |
. . 3
| |
| 12 | isrhmd.q |
. . 3
| |
| 13 | ringgrp 13763 |
. . . 4
| |
| 14 | 6, 13 | syl 14 |
. . 3
|
| 15 | ringgrp 13763 |
. . . 4
| |
| 16 | 7, 15 | syl 14 |
. . 3
|
| 17 | isrhmd.f |
. . 3
| |
| 18 | isrhmd.hp |
. . 3
| |
| 19 | 1, 10, 11, 12, 14, 16, 17, 18 | isghmd 13588 |
. 2
|
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 19 | isrhm2d 13927 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-plusg 12922 df-mulr 12923 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-mhm 13291 df-grp 13335 df-ghm 13577 df-mgp 13683 df-ur 13722 df-ring 13760 df-rhm 13914 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |