| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isrhmd | GIF version | ||
| Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
| isrhmd.o | ⊢ 1 = (1r‘𝑅) |
| isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
| isrhmd.t | ⊢ · = (.r‘𝑅) |
| isrhmd.u | ⊢ × = (.r‘𝑆) |
| isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
| isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
| isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| isrhmd.c | ⊢ 𝐶 = (Base‘𝑆) |
| isrhmd.p | ⊢ + = (+g‘𝑅) |
| isrhmd.q | ⊢ ⨣ = (+g‘𝑆) |
| isrhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| isrhmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| isrhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isrhmd.o | . 2 ⊢ 1 = (1r‘𝑅) | |
| 3 | isrhmd.n | . 2 ⊢ 𝑁 = (1r‘𝑆) | |
| 4 | isrhmd.t | . 2 ⊢ · = (.r‘𝑅) | |
| 5 | isrhmd.u | . 2 ⊢ × = (.r‘𝑆) | |
| 6 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 7 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 8 | isrhmd.ho | . 2 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
| 9 | isrhmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
| 10 | isrhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 11 | isrhmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 12 | isrhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
| 13 | ringgrp 13633 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 14 | 6, 13 | syl 14 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 15 | ringgrp 13633 | . . . 4 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
| 16 | 7, 15 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 17 | isrhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 18 | isrhmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 19 | 1, 10, 11, 12, 14, 16, 17, 18 | isghmd 13458 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 19 | isrhm2d 13797 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 .rcmulr 12781 Grpcgrp 13202 1rcur 13591 Ringcrg 13628 RingHom crh 13782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mhm 13161 df-grp 13205 df-ghm 13447 df-mgp 13553 df-ur 13592 df-ring 13630 df-rhm 13784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |