| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isrhmd | GIF version | ||
| Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
| isrhmd.o | ⊢ 1 = (1r‘𝑅) |
| isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
| isrhmd.t | ⊢ · = (.r‘𝑅) |
| isrhmd.u | ⊢ × = (.r‘𝑆) |
| isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
| isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
| isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| isrhmd.c | ⊢ 𝐶 = (Base‘𝑆) |
| isrhmd.p | ⊢ + = (+g‘𝑅) |
| isrhmd.q | ⊢ ⨣ = (+g‘𝑆) |
| isrhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| isrhmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| isrhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isrhmd.o | . 2 ⊢ 1 = (1r‘𝑅) | |
| 3 | isrhmd.n | . 2 ⊢ 𝑁 = (1r‘𝑆) | |
| 4 | isrhmd.t | . 2 ⊢ · = (.r‘𝑅) | |
| 5 | isrhmd.u | . 2 ⊢ × = (.r‘𝑆) | |
| 6 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 7 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 8 | isrhmd.ho | . 2 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
| 9 | isrhmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
| 10 | isrhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 11 | isrhmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 12 | isrhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
| 13 | ringgrp 13950 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 14 | 6, 13 | syl 14 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 15 | ringgrp 13950 | . . . 4 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
| 16 | 7, 15 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 17 | isrhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 18 | isrhmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 19 | 1, 10, 11, 12, 14, 16, 17, 18 | isghmd 13775 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 19 | isrhm2d 14114 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 .rcmulr 13097 Grpcgrp 13519 1rcur 13908 Ringcrg 13945 RingHom crh 14099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-mhm 13478 df-grp 13522 df-ghm 13764 df-mgp 13870 df-ur 13909 df-ring 13947 df-rhm 14101 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |