ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhmd GIF version

Theorem isrhmd 13662
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
isrhmd.b 𝐵 = (Base‘𝑅)
isrhmd.o 1 = (1r𝑅)
isrhmd.n 𝑁 = (1r𝑆)
isrhmd.t · = (.r𝑅)
isrhmd.u × = (.r𝑆)
isrhmd.r (𝜑𝑅 ∈ Ring)
isrhmd.s (𝜑𝑆 ∈ Ring)
isrhmd.ho (𝜑 → (𝐹1 ) = 𝑁)
isrhmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrhmd.c 𝐶 = (Base‘𝑆)
isrhmd.p + = (+g𝑅)
isrhmd.q = (+g𝑆)
isrhmd.f (𝜑𝐹:𝐵𝐶)
isrhmd.hp ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isrhmd (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   1 (𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isrhmd
StepHypRef Expression
1 isrhmd.b . 2 𝐵 = (Base‘𝑅)
2 isrhmd.o . 2 1 = (1r𝑅)
3 isrhmd.n . 2 𝑁 = (1r𝑆)
4 isrhmd.t . 2 · = (.r𝑅)
5 isrhmd.u . 2 × = (.r𝑆)
6 isrhmd.r . 2 (𝜑𝑅 ∈ Ring)
7 isrhmd.s . 2 (𝜑𝑆 ∈ Ring)
8 isrhmd.ho . 2 (𝜑 → (𝐹1 ) = 𝑁)
9 isrhmd.ht . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
10 isrhmd.c . . 3 𝐶 = (Base‘𝑆)
11 isrhmd.p . . 3 + = (+g𝑅)
12 isrhmd.q . . 3 = (+g𝑆)
13 ringgrp 13497 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
146, 13syl 14 . . 3 (𝜑𝑅 ∈ Grp)
15 ringgrp 13497 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
167, 15syl 14 . . 3 (𝜑𝑆 ∈ Grp)
17 isrhmd.f . . 3 (𝜑𝐹:𝐵𝐶)
18 isrhmd.hp . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
191, 10, 11, 12, 14, 16, 17, 18isghmd 13322 . 2 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
201, 2, 3, 4, 5, 6, 7, 8, 9, 19isrhm2d 13661 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wf 5250  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Grpcgrp 13072  1rcur 13455  Ringcrg 13492   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-ghm 13311  df-mgp 13417  df-ur 13456  df-ring 13494  df-rhm 13648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator