ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemulge12d Unicode version

Theorem lemulge12d 8925
Description: Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1  |-  ( ph  ->  A  e.  RR )
divgt0d.2  |-  ( ph  ->  B  e.  RR )
lemulge11d.3  |-  ( ph  ->  0  <_  A )
lemulge11d.4  |-  ( ph  ->  1  <_  B )
Assertion
Ref Expression
lemulge12d  |-  ( ph  ->  A  <_  ( B  x.  A ) )

Proof of Theorem lemulge12d
StepHypRef Expression
1 ltp1d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 divgt0d.2 . 2  |-  ( ph  ->  B  e.  RR )
3 lemulge11d.3 . 2  |-  ( ph  ->  0  <_  A )
4 lemulge11d.4 . 2  |-  ( ph  ->  1  <_  B )
5 lemulge12 8854 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  ( B  x.  A
) )
61, 2, 3, 4, 5syl22anc 1250 1  |-  ( ph  ->  A  <_  ( B  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   class class class wbr 4018  (class class class)co 5896   RRcr 7840   0cc0 7841   1c1 7842    x. cmul 7846    <_ cle 8023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569
This theorem is referenced by:  bernneq3  10674  eflegeo  11741  dvdslelemd  11881  oddennn  12443
  Copyright terms: Public domain W3C validator