ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslelemd Unicode version

Theorem dvdslelemd 11851
Description: Lemma for dvdsle 11852. (Contributed by Jim Kingdon, 8-Nov-2021.)
Hypotheses
Ref Expression
dvdslelemd.1  |-  ( ph  ->  M  e.  ZZ )
dvdslelemd.2  |-  ( ph  ->  N  e.  NN )
dvdslelemd.3  |-  ( ph  ->  K  e.  ZZ )
dvdslelemd.lt  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
dvdslelemd  |-  ( ph  ->  ( K  x.  M
)  =/=  N )

Proof of Theorem dvdslelemd
StepHypRef Expression
1 dvdslelemd.3 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
2 0z 9266 . . . . 5  |-  0  e.  ZZ
3 zlelttric 9300 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  ->  ( K  <_  0  \/  0  <  K ) )
41, 2, 3sylancl 413 . . . 4  |-  ( ph  ->  ( K  <_  0  \/  0  <  K ) )
5 zgt0ge1 9313 . . . . . 6  |-  ( K  e.  ZZ  ->  (
0  <  K  <->  1  <_  K ) )
61, 5syl 14 . . . . 5  |-  ( ph  ->  ( 0  <  K  <->  1  <_  K ) )
76orbi2d 790 . . . 4  |-  ( ph  ->  ( ( K  <_ 
0  \/  0  < 
K )  <->  ( K  <_  0  \/  1  <_  K ) ) )
84, 7mpbid 147 . . 3  |-  ( ph  ->  ( K  <_  0  \/  1  <_  K ) )
91zred 9377 . . . . . . . 8  |-  ( ph  ->  K  e.  RR )
109adantr 276 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  K  e.  RR )
11 dvdslelemd.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
1211zred 9377 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  M  e.  RR )
1410, 13remulcld 7990 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  e.  RR )
15 0red 7960 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  0  e.  RR )
16 dvdslelemd.2 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
1716nnred 8934 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  N  e.  RR )
1910renegcld 8339 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  -u K  e.  RR )
209le0neg1d 8476 . . . . . . . . 9  |-  ( ph  ->  ( K  <_  0  <->  0  <_  -u K ) )
2120biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  -u K )
22 0red 7960 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
2316nngt0d 8965 . . . . . . . . . . 11  |-  ( ph  ->  0  <  N )
24 dvdslelemd.lt . . . . . . . . . . 11  |-  ( ph  ->  N  <  M )
2522, 17, 12, 23, 24lttrd 8085 . . . . . . . . . 10  |-  ( ph  ->  0  <  M )
2622, 12, 25ltled 8078 . . . . . . . . 9  |-  ( ph  ->  0  <_  M )
2726adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  M )
2819, 13, 21, 27mulge0d 8580 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  (
-u K  x.  M
) )
2914le0neg1d 8476 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  ( ( K  x.  M )  <_  0  <->  0  <_  -u ( K  x.  M )
) )
3010recnd 7988 . . . . . . . . . 10  |-  ( (
ph  /\  K  <_  0 )  ->  K  e.  CC )
3113recnd 7988 . . . . . . . . . 10  |-  ( (
ph  /\  K  <_  0 )  ->  M  e.  CC )
3230, 31mulneg1d 8370 . . . . . . . . 9  |-  ( (
ph  /\  K  <_  0 )  ->  ( -u K  x.  M )  =  -u ( K  x.  M
) )
3332breq2d 4017 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  ( 0  <_  ( -u K  x.  M )  <->  0  <_  -u ( K  x.  M
) ) )
3429, 33bitr4d 191 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  ( ( K  x.  M )  <_  0  <->  0  <_  ( -u K  x.  M ) ) )
3528, 34mpbird 167 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  <_  0
)
3623adantr 276 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  0  <  N )
3714, 15, 18, 35, 36lelttrd 8084 . . . . 5  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  <  N
)
3837ex 115 . . . 4  |-  ( ph  ->  ( K  <_  0  ->  ( K  x.  M
)  <  N )
)
3917adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  N  e.  RR )
4012adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  M  e.  RR )
419adantr 276 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  K  e.  RR )
4241, 40remulcld 7990 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  ( K  x.  M )  e.  RR )
4324adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  N  <  M )
4426adantr 276 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  0  <_  M )
45 simpr 110 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  1  <_  K )
4640, 41, 44, 45lemulge12d 8897 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  M  <_  ( K  x.  M ) )
4739, 40, 42, 43, 46ltletrd 8382 . . . . 5  |-  ( (
ph  /\  1  <_  K )  ->  N  <  ( K  x.  M ) )
4847ex 115 . . . 4  |-  ( ph  ->  ( 1  <_  K  ->  N  <  ( K  x.  M ) ) )
4938, 48orim12d 786 . . 3  |-  ( ph  ->  ( ( K  <_ 
0  \/  1  <_  K )  ->  (
( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
508, 49mpd 13 . 2  |-  ( ph  ->  ( ( K  x.  M )  <  N  \/  N  <  ( K  x.  M ) ) )
51 zq 9628 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
521, 51syl 14 . . . 4  |-  ( ph  ->  K  e.  QQ )
53 zq 9628 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  QQ )
5411, 53syl 14 . . . 4  |-  ( ph  ->  M  e.  QQ )
55 qmulcl 9639 . . . 4  |-  ( ( K  e.  QQ  /\  M  e.  QQ )  ->  ( K  x.  M
)  e.  QQ )
5652, 54, 55syl2anc 411 . . 3  |-  ( ph  ->  ( K  x.  M
)  e.  QQ )
57 nnq 9635 . . . 4  |-  ( N  e.  NN  ->  N  e.  QQ )
5816, 57syl 14 . . 3  |-  ( ph  ->  N  e.  QQ )
59 qlttri2 9643 . . 3  |-  ( ( ( K  x.  M
)  e.  QQ  /\  N  e.  QQ )  ->  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
6056, 58, 59syl2anc 411 . 2  |-  ( ph  ->  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
6150, 60mpbird 167 1  |-  ( ph  ->  ( K  x.  M
)  =/=  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    e. wcel 2148    =/= wne 2347   class class class wbr 4005  (class class class)co 5877   RRcr 7812   0cc0 7813   1c1 7814    x. cmul 7818    < clt 7994    <_ cle 7995   -ucneg 8131   NNcn 8921   ZZcz 9255   QQcq 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-q 9622
This theorem is referenced by:  dvdsle  11852
  Copyright terms: Public domain W3C validator