| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdslelemd | Unicode version | ||
| Description: Lemma for dvdsle 12199. (Contributed by Jim Kingdon, 8-Nov-2021.) |
| Ref | Expression |
|---|---|
| dvdslelemd.1 |
|
| dvdslelemd.2 |
|
| dvdslelemd.3 |
|
| dvdslelemd.lt |
|
| Ref | Expression |
|---|---|
| dvdslelemd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslelemd.3 |
. . . . 5
| |
| 2 | 0z 9390 |
. . . . 5
| |
| 3 | zlelttric 9424 |
. . . . 5
| |
| 4 | 1, 2, 3 | sylancl 413 |
. . . 4
|
| 5 | zgt0ge1 9438 |
. . . . . 6
| |
| 6 | 1, 5 | syl 14 |
. . . . 5
|
| 7 | 6 | orbi2d 792 |
. . . 4
|
| 8 | 4, 7 | mpbid 147 |
. . 3
|
| 9 | 1 | zred 9502 |
. . . . . . . 8
|
| 10 | 9 | adantr 276 |
. . . . . . 7
|
| 11 | dvdslelemd.1 |
. . . . . . . . 9
| |
| 12 | 11 | zred 9502 |
. . . . . . . 8
|
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | 10, 13 | remulcld 8110 |
. . . . . 6
|
| 15 | 0red 8080 |
. . . . . 6
| |
| 16 | dvdslelemd.2 |
. . . . . . . 8
| |
| 17 | 16 | nnred 9056 |
. . . . . . 7
|
| 18 | 17 | adantr 276 |
. . . . . 6
|
| 19 | 10 | renegcld 8459 |
. . . . . . . 8
|
| 20 | 9 | le0neg1d 8597 |
. . . . . . . . 9
|
| 21 | 20 | biimpa 296 |
. . . . . . . 8
|
| 22 | 0red 8080 |
. . . . . . . . . 10
| |
| 23 | 16 | nngt0d 9087 |
. . . . . . . . . . 11
|
| 24 | dvdslelemd.lt |
. . . . . . . . . . 11
| |
| 25 | 22, 17, 12, 23, 24 | lttrd 8205 |
. . . . . . . . . 10
|
| 26 | 22, 12, 25 | ltled 8198 |
. . . . . . . . 9
|
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | 19, 13, 21, 27 | mulge0d 8701 |
. . . . . . 7
|
| 29 | 14 | le0neg1d 8597 |
. . . . . . . 8
|
| 30 | 10 | recnd 8108 |
. . . . . . . . . 10
|
| 31 | 13 | recnd 8108 |
. . . . . . . . . 10
|
| 32 | 30, 31 | mulneg1d 8490 |
. . . . . . . . 9
|
| 33 | 32 | breq2d 4059 |
. . . . . . . 8
|
| 34 | 29, 33 | bitr4d 191 |
. . . . . . 7
|
| 35 | 28, 34 | mpbird 167 |
. . . . . 6
|
| 36 | 23 | adantr 276 |
. . . . . 6
|
| 37 | 14, 15, 18, 35, 36 | lelttrd 8204 |
. . . . 5
|
| 38 | 37 | ex 115 |
. . . 4
|
| 39 | 17 | adantr 276 |
. . . . . 6
|
| 40 | 12 | adantr 276 |
. . . . . 6
|
| 41 | 9 | adantr 276 |
. . . . . . 7
|
| 42 | 41, 40 | remulcld 8110 |
. . . . . 6
|
| 43 | 24 | adantr 276 |
. . . . . 6
|
| 44 | 26 | adantr 276 |
. . . . . . 7
|
| 45 | simpr 110 |
. . . . . . 7
| |
| 46 | 40, 41, 44, 45 | lemulge12d 9018 |
. . . . . 6
|
| 47 | 39, 40, 42, 43, 46 | ltletrd 8503 |
. . . . 5
|
| 48 | 47 | ex 115 |
. . . 4
|
| 49 | 38, 48 | orim12d 788 |
. . 3
|
| 50 | 8, 49 | mpd 13 |
. 2
|
| 51 | zq 9754 |
. . . . 5
| |
| 52 | 1, 51 | syl 14 |
. . . 4
|
| 53 | zq 9754 |
. . . . 5
| |
| 54 | 11, 53 | syl 14 |
. . . 4
|
| 55 | qmulcl 9765 |
. . . 4
| |
| 56 | 52, 54, 55 | syl2anc 411 |
. . 3
|
| 57 | nnq 9761 |
. . . 4
| |
| 58 | 16, 57 | syl 14 |
. . 3
|
| 59 | qlttri2 9769 |
. . 3
| |
| 60 | 56, 58, 59 | syl2anc 411 |
. 2
|
| 61 | 50, 60 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-n0 9303 df-z 9380 df-q 9748 |
| This theorem is referenced by: dvdsle 12199 |
| Copyright terms: Public domain | W3C validator |