ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslelemd Unicode version

Theorem dvdslelemd 12027
Description: Lemma for dvdsle 12028. (Contributed by Jim Kingdon, 8-Nov-2021.)
Hypotheses
Ref Expression
dvdslelemd.1  |-  ( ph  ->  M  e.  ZZ )
dvdslelemd.2  |-  ( ph  ->  N  e.  NN )
dvdslelemd.3  |-  ( ph  ->  K  e.  ZZ )
dvdslelemd.lt  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
dvdslelemd  |-  ( ph  ->  ( K  x.  M
)  =/=  N )

Proof of Theorem dvdslelemd
StepHypRef Expression
1 dvdslelemd.3 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
2 0z 9356 . . . . 5  |-  0  e.  ZZ
3 zlelttric 9390 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  ->  ( K  <_  0  \/  0  <  K ) )
41, 2, 3sylancl 413 . . . 4  |-  ( ph  ->  ( K  <_  0  \/  0  <  K ) )
5 zgt0ge1 9403 . . . . . 6  |-  ( K  e.  ZZ  ->  (
0  <  K  <->  1  <_  K ) )
61, 5syl 14 . . . . 5  |-  ( ph  ->  ( 0  <  K  <->  1  <_  K ) )
76orbi2d 791 . . . 4  |-  ( ph  ->  ( ( K  <_ 
0  \/  0  < 
K )  <->  ( K  <_  0  \/  1  <_  K ) ) )
84, 7mpbid 147 . . 3  |-  ( ph  ->  ( K  <_  0  \/  1  <_  K ) )
91zred 9467 . . . . . . . 8  |-  ( ph  ->  K  e.  RR )
109adantr 276 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  K  e.  RR )
11 dvdslelemd.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
1211zred 9467 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  M  e.  RR )
1410, 13remulcld 8076 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  e.  RR )
15 0red 8046 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  0  e.  RR )
16 dvdslelemd.2 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
1716nnred 9022 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  N  e.  RR )
1910renegcld 8425 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  -u K  e.  RR )
209le0neg1d 8563 . . . . . . . . 9  |-  ( ph  ->  ( K  <_  0  <->  0  <_  -u K ) )
2120biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  -u K )
22 0red 8046 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
2316nngt0d 9053 . . . . . . . . . . 11  |-  ( ph  ->  0  <  N )
24 dvdslelemd.lt . . . . . . . . . . 11  |-  ( ph  ->  N  <  M )
2522, 17, 12, 23, 24lttrd 8171 . . . . . . . . . 10  |-  ( ph  ->  0  <  M )
2622, 12, 25ltled 8164 . . . . . . . . 9  |-  ( ph  ->  0  <_  M )
2726adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  M )
2819, 13, 21, 27mulge0d 8667 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  (
-u K  x.  M
) )
2914le0neg1d 8563 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  ( ( K  x.  M )  <_  0  <->  0  <_  -u ( K  x.  M )
) )
3010recnd 8074 . . . . . . . . . 10  |-  ( (
ph  /\  K  <_  0 )  ->  K  e.  CC )
3113recnd 8074 . . . . . . . . . 10  |-  ( (
ph  /\  K  <_  0 )  ->  M  e.  CC )
3230, 31mulneg1d 8456 . . . . . . . . 9  |-  ( (
ph  /\  K  <_  0 )  ->  ( -u K  x.  M )  =  -u ( K  x.  M
) )
3332breq2d 4046 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  ( 0  <_  ( -u K  x.  M )  <->  0  <_  -u ( K  x.  M
) ) )
3429, 33bitr4d 191 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  ( ( K  x.  M )  <_  0  <->  0  <_  ( -u K  x.  M ) ) )
3528, 34mpbird 167 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  <_  0
)
3623adantr 276 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  0  <  N )
3714, 15, 18, 35, 36lelttrd 8170 . . . . 5  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  <  N
)
3837ex 115 . . . 4  |-  ( ph  ->  ( K  <_  0  ->  ( K  x.  M
)  <  N )
)
3917adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  N  e.  RR )
4012adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  M  e.  RR )
419adantr 276 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  K  e.  RR )
4241, 40remulcld 8076 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  ( K  x.  M )  e.  RR )
4324adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  N  <  M )
4426adantr 276 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  0  <_  M )
45 simpr 110 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  1  <_  K )
4640, 41, 44, 45lemulge12d 8984 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  M  <_  ( K  x.  M ) )
4739, 40, 42, 43, 46ltletrd 8469 . . . . 5  |-  ( (
ph  /\  1  <_  K )  ->  N  <  ( K  x.  M ) )
4847ex 115 . . . 4  |-  ( ph  ->  ( 1  <_  K  ->  N  <  ( K  x.  M ) ) )
4938, 48orim12d 787 . . 3  |-  ( ph  ->  ( ( K  <_ 
0  \/  1  <_  K )  ->  (
( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
508, 49mpd 13 . 2  |-  ( ph  ->  ( ( K  x.  M )  <  N  \/  N  <  ( K  x.  M ) ) )
51 zq 9719 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
521, 51syl 14 . . . 4  |-  ( ph  ->  K  e.  QQ )
53 zq 9719 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  QQ )
5411, 53syl 14 . . . 4  |-  ( ph  ->  M  e.  QQ )
55 qmulcl 9730 . . . 4  |-  ( ( K  e.  QQ  /\  M  e.  QQ )  ->  ( K  x.  M
)  e.  QQ )
5652, 54, 55syl2anc 411 . . 3  |-  ( ph  ->  ( K  x.  M
)  e.  QQ )
57 nnq 9726 . . . 4  |-  ( N  e.  NN  ->  N  e.  QQ )
5816, 57syl 14 . . 3  |-  ( ph  ->  N  e.  QQ )
59 qlttri2 9734 . . 3  |-  ( ( ( K  x.  M
)  e.  QQ  /\  N  e.  QQ )  ->  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
6056, 58, 59syl2anc 411 . 2  |-  ( ph  ->  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
6150, 60mpbird 167 1  |-  ( ph  ->  ( K  x.  M
)  =/=  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2167    =/= wne 2367   class class class wbr 4034  (class class class)co 5925   RRcr 7897   0cc0 7898   1c1 7899    x. cmul 7903    < clt 8080    <_ cle 8081   -ucneg 8217   NNcn 9009   ZZcz 9345   QQcq 9712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-n0 9269  df-z 9346  df-q 9713
This theorem is referenced by:  dvdsle  12028
  Copyright terms: Public domain W3C validator