ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslelemd Unicode version

Theorem dvdslelemd 12340
Description: Lemma for dvdsle 12341. (Contributed by Jim Kingdon, 8-Nov-2021.)
Hypotheses
Ref Expression
dvdslelemd.1  |-  ( ph  ->  M  e.  ZZ )
dvdslelemd.2  |-  ( ph  ->  N  e.  NN )
dvdslelemd.3  |-  ( ph  ->  K  e.  ZZ )
dvdslelemd.lt  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
dvdslelemd  |-  ( ph  ->  ( K  x.  M
)  =/=  N )

Proof of Theorem dvdslelemd
StepHypRef Expression
1 dvdslelemd.3 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
2 0z 9445 . . . . 5  |-  0  e.  ZZ
3 zlelttric 9479 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  ->  ( K  <_  0  \/  0  <  K ) )
41, 2, 3sylancl 413 . . . 4  |-  ( ph  ->  ( K  <_  0  \/  0  <  K ) )
5 zgt0ge1 9493 . . . . . 6  |-  ( K  e.  ZZ  ->  (
0  <  K  <->  1  <_  K ) )
61, 5syl 14 . . . . 5  |-  ( ph  ->  ( 0  <  K  <->  1  <_  K ) )
76orbi2d 795 . . . 4  |-  ( ph  ->  ( ( K  <_ 
0  \/  0  < 
K )  <->  ( K  <_  0  \/  1  <_  K ) ) )
84, 7mpbid 147 . . 3  |-  ( ph  ->  ( K  <_  0  \/  1  <_  K ) )
91zred 9557 . . . . . . . 8  |-  ( ph  ->  K  e.  RR )
109adantr 276 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  K  e.  RR )
11 dvdslelemd.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
1211zred 9557 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  M  e.  RR )
1410, 13remulcld 8165 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  e.  RR )
15 0red 8135 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  0  e.  RR )
16 dvdslelemd.2 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
1716nnred 9111 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  N  e.  RR )
1910renegcld 8514 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  -u K  e.  RR )
209le0neg1d 8652 . . . . . . . . 9  |-  ( ph  ->  ( K  <_  0  <->  0  <_  -u K ) )
2120biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  -u K )
22 0red 8135 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
2316nngt0d 9142 . . . . . . . . . . 11  |-  ( ph  ->  0  <  N )
24 dvdslelemd.lt . . . . . . . . . . 11  |-  ( ph  ->  N  <  M )
2522, 17, 12, 23, 24lttrd 8260 . . . . . . . . . 10  |-  ( ph  ->  0  <  M )
2622, 12, 25ltled 8253 . . . . . . . . 9  |-  ( ph  ->  0  <_  M )
2726adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  M )
2819, 13, 21, 27mulge0d 8756 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  0  <_  (
-u K  x.  M
) )
2914le0neg1d 8652 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  ( ( K  x.  M )  <_  0  <->  0  <_  -u ( K  x.  M )
) )
3010recnd 8163 . . . . . . . . . 10  |-  ( (
ph  /\  K  <_  0 )  ->  K  e.  CC )
3113recnd 8163 . . . . . . . . . 10  |-  ( (
ph  /\  K  <_  0 )  ->  M  e.  CC )
3230, 31mulneg1d 8545 . . . . . . . . 9  |-  ( (
ph  /\  K  <_  0 )  ->  ( -u K  x.  M )  =  -u ( K  x.  M
) )
3332breq2d 4094 . . . . . . . 8  |-  ( (
ph  /\  K  <_  0 )  ->  ( 0  <_  ( -u K  x.  M )  <->  0  <_  -u ( K  x.  M
) ) )
3429, 33bitr4d 191 . . . . . . 7  |-  ( (
ph  /\  K  <_  0 )  ->  ( ( K  x.  M )  <_  0  <->  0  <_  ( -u K  x.  M ) ) )
3528, 34mpbird 167 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  <_  0
)
3623adantr 276 . . . . . 6  |-  ( (
ph  /\  K  <_  0 )  ->  0  <  N )
3714, 15, 18, 35, 36lelttrd 8259 . . . . 5  |-  ( (
ph  /\  K  <_  0 )  ->  ( K  x.  M )  <  N
)
3837ex 115 . . . 4  |-  ( ph  ->  ( K  <_  0  ->  ( K  x.  M
)  <  N )
)
3917adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  N  e.  RR )
4012adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  M  e.  RR )
419adantr 276 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  K  e.  RR )
4241, 40remulcld 8165 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  ( K  x.  M )  e.  RR )
4324adantr 276 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  N  <  M )
4426adantr 276 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  0  <_  M )
45 simpr 110 . . . . . . 7  |-  ( (
ph  /\  1  <_  K )  ->  1  <_  K )
4640, 41, 44, 45lemulge12d 9073 . . . . . 6  |-  ( (
ph  /\  1  <_  K )  ->  M  <_  ( K  x.  M ) )
4739, 40, 42, 43, 46ltletrd 8558 . . . . 5  |-  ( (
ph  /\  1  <_  K )  ->  N  <  ( K  x.  M ) )
4847ex 115 . . . 4  |-  ( ph  ->  ( 1  <_  K  ->  N  <  ( K  x.  M ) ) )
4938, 48orim12d 791 . . 3  |-  ( ph  ->  ( ( K  <_ 
0  \/  1  <_  K )  ->  (
( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
508, 49mpd 13 . 2  |-  ( ph  ->  ( ( K  x.  M )  <  N  \/  N  <  ( K  x.  M ) ) )
51 zq 9809 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
521, 51syl 14 . . . 4  |-  ( ph  ->  K  e.  QQ )
53 zq 9809 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  QQ )
5411, 53syl 14 . . . 4  |-  ( ph  ->  M  e.  QQ )
55 qmulcl 9820 . . . 4  |-  ( ( K  e.  QQ  /\  M  e.  QQ )  ->  ( K  x.  M
)  e.  QQ )
5652, 54, 55syl2anc 411 . . 3  |-  ( ph  ->  ( K  x.  M
)  e.  QQ )
57 nnq 9816 . . . 4  |-  ( N  e.  NN  ->  N  e.  QQ )
5816, 57syl 14 . . 3  |-  ( ph  ->  N  e.  QQ )
59 qlttri2 9824 . . 3  |-  ( ( ( K  x.  M
)  e.  QQ  /\  N  e.  QQ )  ->  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
6056, 58, 59syl2anc 411 . 2  |-  ( ph  ->  ( ( K  x.  M )  =/=  N  <->  ( ( K  x.  M
)  <  N  \/  N  <  ( K  x.  M ) ) ) )
6150, 60mpbird 167 1  |-  ( ph  ->  ( K  x.  M
)  =/=  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    e. wcel 2200    =/= wne 2400   class class class wbr 4082  (class class class)co 5994   RRcr 7986   0cc0 7987   1c1 7988    x. cmul 7992    < clt 8169    <_ cle 8170   -ucneg 8306   NNcn 9098   ZZcz 9434   QQcq 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-q 9803
This theorem is referenced by:  dvdsle  12341
  Copyright terms: Public domain W3C validator