ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdneg Unicode version

Theorem gcdneg 12122
Description: Negating one operand of the  gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdneg  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N
)  =  ( M  gcd  N ) )

Proof of Theorem gcdneg
StepHypRef Expression
1 oveq12 5928 . . . . 5  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( 0  gcd  0 ) )
21adantl 277 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  =  ( 0  gcd  0 ) )
3 zcn 9325 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
43negeq0d 8324 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  -u N  =  0 ) )
54anbi2d 464 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( M  =  0  /\  N  =  0 )  <->  ( M  =  0  /\  -u N  =  0 ) ) )
65adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  <->  ( M  =  0  /\  -u N  =  0 ) ) )
7 oveq12 5928 . . . . . 6  |-  ( ( M  =  0  /\  -u N  =  0
)  ->  ( M  gcd  -u N )  =  ( 0  gcd  0
) )
86, 7biimtrdi 163 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  -u N )  =  ( 0  gcd  0
) ) )
98imp 124 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  -u N
)  =  ( 0  gcd  0 ) )
102, 9eqtr4d 2229 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  =  ( M  gcd  -u N ) )
11 gcddvds 12103 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
12 gcdcl 12106 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
1312nn0zd 9440 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  ZZ )
14 dvdsnegb 11954 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  <->  ( M  gcd  N )  ||  -u N
) )
1513, 14sylancom 420 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  <->  ( M  gcd  N )  ||  -u N
) )
1615anbi2d 464 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N )  <-> 
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  -u N ) ) )
1711, 16mpbid 147 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  -u N ) )
186notbid 668 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  <->  -.  ( M  =  0  /\  -u N  =  0 ) ) )
19 simpl 109 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
20 znegcl 9351 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
2120adantl 277 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> 
-u N  e.  ZZ )
22 dvdslegcd 12104 . . . . . . . . . 10  |-  ( ( ( ( M  gcd  N )  e.  ZZ  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  /\  -.  ( M  =  0  /\  -u N  =  0 ) )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  -u N )  -> 
( M  gcd  N
)  <_  ( M  gcd  -u N ) ) )
2322ex 115 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  -u N  =  0 )  ->  ( (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  -u N )  -> 
( M  gcd  N
)  <_  ( M  gcd  -u N ) ) ) )
2413, 19, 21, 23syl3anc 1249 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  -u N  =  0 )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  -u N
)  ->  ( M  gcd  N )  <_  ( M  gcd  -u N ) ) ) )
2518, 24sylbid 150 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  -u N
)  ->  ( M  gcd  N )  <_  ( M  gcd  -u N ) ) ) )
2625com12 30 . . . . . 6  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  -u N )  -> 
( M  gcd  N
)  <_  ( M  gcd  -u N ) ) ) )
2717, 26mpdi 43 . . . . 5  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  <_ 
( M  gcd  -u N
) ) )
2827impcom 125 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  <_  ( M  gcd  -u N ) )
29 gcddvds 12103 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  -u N
) )
3020, 29sylan2 286 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N
)  ||  -u N ) )
31 gcdcl 12106 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  gcd  -u N )  e.  NN0 )
3231nn0zd 9440 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  gcd  -u N )  e.  ZZ )
3320, 32sylan2 286 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N
)  e.  ZZ )
34 dvdsnegb 11954 . . . . . . . . 9  |-  ( ( ( M  gcd  -u N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  N  <->  ( M  gcd  -u N
)  ||  -u N ) )
3533, 34sylancom 420 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  N  <->  ( M  gcd  -u N
)  ||  -u N ) )
3635anbi2d 464 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  N
)  <->  ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  -u N
) ) )
3730, 36mpbird 167 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N
)  ||  N )
)
38 simpr 110 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
39 dvdslegcd 12104 . . . . . . . . 9  |-  ( ( ( ( M  gcd  -u N )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  N
)  ->  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) )
4039ex 115 . . . . . . . 8  |-  ( ( ( M  gcd  -u N
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
( M  gcd  -u N
)  ||  M  /\  ( M  gcd  -u N
)  ||  N )  ->  ( M  gcd  -u N
)  <_  ( M  gcd  N ) ) ) )
4133, 19, 38, 40syl3anc 1249 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  -> 
( ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  N
)  ->  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) ) )
4241com12 30 . . . . . 6  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N
)  ||  N )  ->  ( M  gcd  -u N
)  <_  ( M  gcd  N ) ) ) )
4337, 42mpdi 43 . . . . 5  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) )
4443impcom 125 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  -u N )  <_  ( M  gcd  N ) )
4513zred 9442 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  RR )
4633zred 9442 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N
)  e.  RR )
4745, 46letri3d 8137 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  =  ( M  gcd  -u N )  <->  ( ( M  gcd  N )  <_ 
( M  gcd  -u N
)  /\  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) ) )
4847adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( ( M  gcd  N )  =  ( M  gcd  -u N
)  <->  ( ( M  gcd  N )  <_ 
( M  gcd  -u N
)  /\  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) ) )
4928, 44, 48mpbir2and 946 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  -u N ) )
50 gcdmndc 12084 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
51 exmiddc 837 . . . 4  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> 
( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
5250, 51syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
5310, 49, 52mpjaodan 799 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( M  gcd  -u N ) )
5453eqcomd 2199 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N
)  =  ( M  gcd  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4030  (class class class)co 5919   0cc0 7874    <_ cle 8057   -ucneg 8193   ZZcz 9320    || cdvds 11933    gcd cgcd 12082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083
This theorem is referenced by:  neggcd  12123  gcdabs  12128
  Copyright terms: Public domain W3C validator