ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdneg Unicode version

Theorem gcdneg 12274
Description: Negating one operand of the  gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdneg  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N
)  =  ( M  gcd  N ) )

Proof of Theorem gcdneg
StepHypRef Expression
1 oveq12 5952 . . . . 5  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( 0  gcd  0 ) )
21adantl 277 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  =  ( 0  gcd  0 ) )
3 zcn 9376 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
43negeq0d 8374 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  -u N  =  0 ) )
54anbi2d 464 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( M  =  0  /\  N  =  0 )  <->  ( M  =  0  /\  -u N  =  0 ) ) )
65adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  <->  ( M  =  0  /\  -u N  =  0 ) ) )
7 oveq12 5952 . . . . . 6  |-  ( ( M  =  0  /\  -u N  =  0
)  ->  ( M  gcd  -u N )  =  ( 0  gcd  0
) )
86, 7biimtrdi 163 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  -u N )  =  ( 0  gcd  0
) ) )
98imp 124 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  -u N
)  =  ( 0  gcd  0 ) )
102, 9eqtr4d 2240 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  =  ( M  gcd  -u N ) )
11 gcddvds 12255 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
12 gcdcl 12258 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
1312nn0zd 9492 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  ZZ )
14 dvdsnegb 12090 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  <->  ( M  gcd  N )  ||  -u N
) )
1513, 14sylancom 420 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  <->  ( M  gcd  N )  ||  -u N
) )
1615anbi2d 464 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N )  <-> 
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  -u N ) ) )
1711, 16mpbid 147 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  -u N ) )
186notbid 668 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  <->  -.  ( M  =  0  /\  -u N  =  0 ) ) )
19 simpl 109 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
20 znegcl 9402 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
2120adantl 277 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> 
-u N  e.  ZZ )
22 dvdslegcd 12256 . . . . . . . . . 10  |-  ( ( ( ( M  gcd  N )  e.  ZZ  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  /\  -.  ( M  =  0  /\  -u N  =  0 ) )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  -u N )  -> 
( M  gcd  N
)  <_  ( M  gcd  -u N ) ) )
2322ex 115 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  -u N  =  0 )  ->  ( (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  -u N )  -> 
( M  gcd  N
)  <_  ( M  gcd  -u N ) ) ) )
2413, 19, 21, 23syl3anc 1249 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  -u N  =  0 )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  -u N
)  ->  ( M  gcd  N )  <_  ( M  gcd  -u N ) ) ) )
2518, 24sylbid 150 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  -u N
)  ->  ( M  gcd  N )  <_  ( M  gcd  -u N ) ) ) )
2625com12 30 . . . . . 6  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  -u N )  -> 
( M  gcd  N
)  <_  ( M  gcd  -u N ) ) ) )
2717, 26mpdi 43 . . . . 5  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  <_ 
( M  gcd  -u N
) ) )
2827impcom 125 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  <_  ( M  gcd  -u N ) )
29 gcddvds 12255 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  -u N
) )
3020, 29sylan2 286 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N
)  ||  -u N ) )
31 gcdcl 12258 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  gcd  -u N )  e.  NN0 )
3231nn0zd 9492 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  gcd  -u N )  e.  ZZ )
3320, 32sylan2 286 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N
)  e.  ZZ )
34 dvdsnegb 12090 . . . . . . . . 9  |-  ( ( ( M  gcd  -u N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  N  <->  ( M  gcd  -u N
)  ||  -u N ) )
3533, 34sylancom 420 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  N  <->  ( M  gcd  -u N
)  ||  -u N ) )
3635anbi2d 464 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  N
)  <->  ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  -u N
) ) )
3730, 36mpbird 167 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N
)  ||  N )
)
38 simpr 110 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
39 dvdslegcd 12256 . . . . . . . . 9  |-  ( ( ( ( M  gcd  -u N )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  N
)  ->  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) )
4039ex 115 . . . . . . . 8  |-  ( ( ( M  gcd  -u N
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
( M  gcd  -u N
)  ||  M  /\  ( M  gcd  -u N
)  ||  N )  ->  ( M  gcd  -u N
)  <_  ( M  gcd  N ) ) ) )
4133, 19, 38, 40syl3anc 1249 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  -> 
( ( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N )  ||  N
)  ->  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) ) )
4241com12 30 . . . . . 6  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  -u N )  ||  M  /\  ( M  gcd  -u N
)  ||  N )  ->  ( M  gcd  -u N
)  <_  ( M  gcd  N ) ) ) )
4337, 42mpdi 43 . . . . 5  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) )
4443impcom 125 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  -u N )  <_  ( M  gcd  N ) )
4513zred 9494 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  RR )
4633zred 9494 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N
)  e.  RR )
4745, 46letri3d 8187 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  =  ( M  gcd  -u N )  <->  ( ( M  gcd  N )  <_ 
( M  gcd  -u N
)  /\  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) ) )
4847adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( ( M  gcd  N )  =  ( M  gcd  -u N
)  <->  ( ( M  gcd  N )  <_ 
( M  gcd  -u N
)  /\  ( M  gcd  -u N )  <_ 
( M  gcd  N
) ) ) )
4928, 44, 48mpbir2and 946 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  -u N ) )
50 gcdmndc 12247 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
51 exmiddc 837 . . . 4  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> 
( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
5250, 51syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
5310, 49, 52mpjaodan 799 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( M  gcd  -u N ) )
5453eqcomd 2210 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N
)  =  ( M  gcd  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   0cc0 7924    <_ cle 8107   -ucneg 8243   ZZcz 9371    || cdvds 12069    gcd cgcd 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-sup 7085  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-dvds 12070  df-gcd 12246
This theorem is referenced by:  neggcd  12275  gcdabs  12280
  Copyright terms: Public domain W3C validator