ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcidlem Unicode version

Theorem pcidlem 12517
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcidlem  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )

Proof of Theorem pcidlem
StepHypRef Expression
1 simpl 109 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  P  e.  Prime )
2 prmnn 12303 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2syl 14 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  P  e.  NN )
4 simpr 110 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  A  e.  NN0 )
53, 4nnexpcld 10804 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ A )  e.  NN )
61, 5pccld 12494 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  e. 
NN0 )
76nn0red 9320 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  e.  RR )
87leidd 8558 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  <_ 
( P  pCnt  ( P ^ A ) ) )
95nnzd 9464 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ A )  e.  ZZ )
10 pcdvdsb 12514 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( P ^ A )  e.  ZZ  /\  ( P 
pCnt  ( P ^ A ) )  e. 
NN0 )  ->  (
( P  pCnt  ( P ^ A ) )  <_  ( P  pCnt  ( P ^ A ) )  <->  ( P ^
( P  pCnt  ( P ^ A ) ) )  ||  ( P ^ A ) ) )
111, 9, 6, 10syl3anc 1249 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  (
( P  pCnt  ( P ^ A ) )  <_  ( P  pCnt  ( P ^ A ) )  <->  ( P ^
( P  pCnt  ( P ^ A ) ) )  ||  ( P ^ A ) ) )
128, 11mpbid 147 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ ( P  pCnt  ( P ^ A ) ) )  ||  ( P ^ A ) )
133, 6nnexpcld 10804 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ ( P  pCnt  ( P ^ A ) ) )  e.  NN )
1413nnzd 9464 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ ( P  pCnt  ( P ^ A ) ) )  e.  ZZ )
15 dvdsle 12026 . . . . 5  |-  ( ( ( P ^ ( P  pCnt  ( P ^ A ) ) )  e.  ZZ  /\  ( P ^ A )  e.  NN )  ->  (
( P ^ ( P  pCnt  ( P ^ A ) ) ) 
||  ( P ^ A )  ->  ( P ^ ( P  pCnt  ( P ^ A ) ) )  <_  ( P ^ A ) ) )
1614, 5, 15syl2anc 411 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  (
( P ^ ( P  pCnt  ( P ^ A ) ) ) 
||  ( P ^ A )  ->  ( P ^ ( P  pCnt  ( P ^ A ) ) )  <_  ( P ^ A ) ) )
1712, 16mpd 13 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ ( P  pCnt  ( P ^ A ) ) )  <_  ( P ^ A ) )
183nnred 9020 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  P  e.  RR )
19 prmuz2 12324 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
20 eluz2gt1 9693 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
211, 19, 203syl 17 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  1  <  P )
22 nn0leexp2 10819 . . . 4  |-  ( ( ( P  e.  RR  /\  ( P  pCnt  ( P ^ A ) )  e.  NN0  /\  A  e. 
NN0 )  /\  1  <  P )  ->  (
( P  pCnt  ( P ^ A ) )  <_  A  <->  ( P ^ ( P  pCnt  ( P ^ A ) ) )  <_  ( P ^ A ) ) )
2318, 6, 4, 21, 22syl31anc 1252 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  (
( P  pCnt  ( P ^ A ) )  <_  A  <->  ( P ^ ( P  pCnt  ( P ^ A ) ) )  <_  ( P ^ A ) ) )
2417, 23mpbird 167 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  <_  A )
25 iddvds 11986 . . . 4  |-  ( ( P ^ A )  e.  ZZ  ->  ( P ^ A )  ||  ( P ^ A ) )
269, 25syl 14 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P ^ A )  ||  ( P ^ A ) )
27 pcdvdsb 12514 . . . 4  |-  ( ( P  e.  Prime  /\  ( P ^ A )  e.  ZZ  /\  A  e. 
NN0 )  ->  ( A  <_  ( P  pCnt  ( P ^ A ) )  <->  ( P ^ A )  ||  ( P ^ A ) ) )
281, 9, 4, 27syl3anc 1249 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( A  <_  ( P  pCnt  ( P ^ A ) )  <->  ( P ^ A )  ||  ( P ^ A ) ) )
2926, 28mpbird 167 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  A  <_  ( P  pCnt  ( P ^ A ) ) )
30 nn0re 9275 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
3130adantl 277 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  A  e.  RR )
327, 31letri3d 8159 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  (
( P  pCnt  ( P ^ A ) )  =  A  <->  ( ( P  pCnt  ( P ^ A ) )  <_  A  /\  A  <_  ( P  pCnt  ( P ^ A ) ) ) ) )
3324, 29, 32mpbir2and 946 1  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7895   1c1 7897    < clt 8078    <_ cle 8079   NNcn 9007   2c2 9058   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618   ^cexp 10647    || cdvds 11969   Primecprime 12300    pCnt cpc 12478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301  df-pc 12479
This theorem is referenced by:  pcid  12518  pcmpt  12537  dvdsppwf1o  15309
  Copyright terms: Public domain W3C validator