ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcan Unicode version

Theorem expcan 10414
Description: Cancellation law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expcan  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( ( A ^ M )  =  ( A ^ N
)  <->  M  =  N
) )

Proof of Theorem expcan
StepHypRef Expression
1 simpl1 967 . . . . 5  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  A  e.  RR )
2 simpl2 968 . . . . 5  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  M  e.  ZZ )
3 simpl3 969 . . . . 5  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  N  e.  ZZ )
4 simpr 109 . . . . 5  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  1  <  A
)
51, 2, 3, 4expcanlem 10413 . . . 4  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( ( A ^ M )  <_ 
( A ^ N
)  ->  M  <_  N ) )
61, 3, 2, 4expcanlem 10413 . . . 4  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( ( A ^ N )  <_ 
( A ^ M
)  ->  N  <_  M ) )
75, 6anim12d 331 . . 3  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( ( ( A ^ M )  <_  ( A ^ N )  /\  ( A ^ N )  <_ 
( A ^ M
) )  ->  ( M  <_  N  /\  N  <_  M ) ) )
8 0red 7731 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  0  e.  RR )
9 1red 7745 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  1  e.  RR )
10 0lt1 7853 . . . . . . . 8  |-  0  <  1
1110a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  0  <  1
)
128, 9, 1, 11, 4lttrd 7852 . . . . . 6  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  0  <  A
)
131, 12gt0ap0d 8354 . . . . 5  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  A #  0 )
141, 13, 2reexpclzapd 10400 . . . 4  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( A ^ M )  e.  RR )
151, 13, 3reexpclzapd 10400 . . . 4  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( A ^ N )  e.  RR )
1614, 15letri3d 7843 . . 3  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( ( A ^ M )  =  ( A ^ N
)  <->  ( ( A ^ M )  <_ 
( A ^ N
)  /\  ( A ^ N )  <_  ( A ^ M ) ) ) )
172zred 9127 . . . 4  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  M  e.  RR )
183zred 9127 . . . 4  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  N  e.  RR )
1917, 18letri3d 7843 . . 3  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( M  =  N  <->  ( M  <_  N  /\  N  <_  M
) ) )
207, 16, 193imtr4d 202 . 2  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( ( A ^ M )  =  ( A ^ N
)  ->  M  =  N ) )
21 oveq2 5748 . 2  |-  ( M  =  N  ->  ( A ^ M )  =  ( A ^ N
) )
2220, 21impbid1 141 1  |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( ( A ^ M )  =  ( A ^ N
)  <->  M  =  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   RRcr 7583   0cc0 7584   1c1 7585    < clt 7764    <_ cle 7765   ZZcz 9008   ^cexp 10243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-n0 8932  df-z 9009  df-uz 9279  df-rp 9394  df-seqfrec 10170  df-exp 10244
This theorem is referenced by:  expcand  10415
  Copyright terms: Public domain W3C validator